Topic

# Grid-connected photovoltaic power system

About: Grid-connected photovoltaic power system is a research topic. Over the lifetime, 12066 publications have been published within this topic receiving 245535 citations. The topic is also known as: grid-connected PV power system.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this article, the authors focus on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid and categorize the inverters into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the kind of grid-connected power stage.

Abstract: This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single-phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the type of grid-connected power stage. Various inverter topologies are presented, compared, and evaluated against demands, lifetime, component ratings, and cost. Finally, some of the topologies are pointed out as the best candidates for either single PV module or multiple PV module applications.

3,530 citations

•

21 Feb 2011TL;DR: In this article, the authors present an overview of the Grid Converter and its application in photovoltaic (PV) power converters, including the following: 1.1 Introduction. 2.3 Inverter Structures Derived from H-Bridge Topology. 3.4 Power Quality. 4.5 Adaptive Filtering.

Abstract: About the Authors. Preface. Acknowledgements. 1 Introduction. 1.1 Wind Power Development. 1.2 Photovoltaic Power Development. 1.3 The Grid Converter The Key Element in Grid Integration of WT and PV Systems. 2 Photovoltaic Inverter Structures. 2.1 Introduction. 2.2 Inverter Structures Derived from H-Bridge Topology. 2.3 Inverter Structures Derived from NPC Topology. 2.4 Typical PV Inverter Structures. 2.5 Three-Phase PV Inverters. 2.6 Control Structures. 2.7 Conclusions and Future Trends. 3 Grid Requirements for PV. 3.1 Introduction. 3.2 International Regulations. 3.3 Response to Abnormal Grid Conditions. 3.4 Power Quality. 3.5 Anti-islanding Requirements. 3.6 Summary. 4 Grid Synchronization in Single-Phase Power Converters. 4.1 Introduction. 4.2 Grid Synchronization Techniques for Single-Phase Systems. 4.3 Phase Detection Based on In-Quadrature Signals. 4.4 Some PLLs Based on In-Quadrature Signal Generation. 4.5 Some PLLs Based on Adaptive Filtering. 4.6 The SOGI Frequency-Locked Loop. 4.7 Summary. 5 Islanding Detection. 5.1 Introduction. 5.2 Nondetection Zone. 5.3 Overview of Islanding Detection Methods. 5.4 Passive Islanding Detection Methods. 5.5 Active Islanding Detection Methods. 5.6 Summary. 6 Grid Converter Structures forWind Turbine Systems. 6.1 Introduction. 6.2 WTS Power Configurations. 6.3 Grid Power Converter Topologies. 6.4 WTS Control. 6.5 Summary. 7 Grid Requirements for WT Systems. 7.1 Introduction. 7.2 Grid Code Evolution. 7.3 Frequency and Voltage Deviation under Normal Operation. 7.4 Active Power Control in Normal Operation. 7.5 Reactive Power Control in Normal Operation. 7.6 Behaviour under Grid Disturbances. 7.7 Discussion of Harmonization of Grid Codes. 7.8 Future Trends. 7.9 Summary. 8 Grid Synchronization in Three-Phase Power Converters. 8.1 Introduction. 8.2 The Three-Phase Voltage Vector under Grid Faults. 8.3 The Synchronous Reference Frame PLL under Unbalanced and Distorted Grid Conditions. 8.4 The Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL). 8.5 The Double Second-Order Generalized Integrator FLL (DSOGI-FLL). 8.6 Summary. 9 Grid Converter Control for WTS. 9.1 Introduction. 9.2 Model of the Converter. 9.3 AC Voltage and DC Voltage Control. 9.4 Voltage Oriented Control and Direct Power Control. 9.5 Stand-alone, Micro-grid, Droop Control and Grid Supporting. 9.6 Summary. 10 Control of Grid Converters under Grid Faults. 10.1 Introduction. 10.2 Overview of Control Techniques for Grid-Connected Converters under Unbalanced Grid Voltage Conditions. 10.3 Control Structures for Unbalanced Current Injection. 10.4 Power Control under Unbalanced Grid Conditions. 10.5 Flexible Power Control with Current Limitation. 10.6 Summary. 11 Grid Filter Design. 11.1 Introduction. 11.2 Filter Topologies. 11.3 Design Considerations. 11.4 Practical Examples of LCL Filters and Grid Interactions. 11.5 Resonance Problem and Damping Solutions. 11.6 Nonlinear Behaviour of the Filter. 11.7 Summary. 12 Grid Current Control. 12.1 Introduction. 12.2 Current Harmonic Requirements. 12.3 Linear Current Control with Separated Modulation. 12.4 Modulation Techniques. 12.5 Operating Limits of the Current-Controlled Converter. 12.6 Practical Example. 12.7 Summary. Appendix A Space Vector Transformations of Three-Phase Systems. A.1 Introduction. A.2 Symmetrical Components in the Frequency Domain. A.3 Symmetrical Components in the Time Domain. A.4 Components 0 on the Stationary Reference Frame. A.5 Components dq0 on the Synchronous Reference Frame. Appendix B Instantaneous Power Theories. B.1 Introduction. B.2 Origin of Power Definitions at the Time Domain for Single-Phase Systems. B.3 Origin of Active Currents in Multiphase Systems. B.4 Instantaneous Calculation of Power Currents in Multiphase Systems. B.5 The p-q Theory. B.6 Generalization of the p-q Theory to Arbitrary Multiphase Systems. B.7 The Modified p-q Theory. B.8 Generalized Instantaneous Reactive Power Theory for Three-Phase Power Systems. B.9 Summary. Appendix C Resonant Controller. C.1 Introduction. C.2 Internal Model Principle. C.3 Equivalence of the PI Controller in the dq Frame and the P+Resonant Controller in the Frame. Index.

2,509 citations

01 Jan 2012

TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations

•

01 Oct 1981

TL;DR: In this paper, the solar source of light energy is described and quantified, along with a review of semiconductor properties and the generation, recombination, and the basic equations of photovoltaic device physics.

Abstract: Solar cell theory, materials, fabrication, design, modules, and systems are discussed. The solar source of light energy is described and quantified, along with a review of semiconductor properties and the generation, recombination, and the basic equations of photovoltaic device physics. Particular attention is given to p-n junction diodes, including efficiency limits, losses, and measurements. Si solar cell technology is described for the production of solar-quality crystals and wafers, and design, improvements, and device structures are examined. Consideration is given to alternate semiconductor materials and applications in concentrating systems, storage, and the design and construction of standalone systems and systems for residential and centralized power generation. Bibtex entry for this abstract Preferred format for this abstract

1,773 citations

••

TL;DR: In this paper, a comprehensive review of the MPPT techniques applied to photovoltaic (PV) power system available until January, 2012 is provided, which is intended to serve as a convenient reference for future MPPT users in PV systems. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits.

Abstract: This paper provides a comprehensive review of the maximum power point tracking (MPPT) techniques applied to photovoltaic (PV) power system available until January, 2012. A good number of publications report on different MPPT techniques for a PV system together with implementation. But, confusion lies while selecting a MPPT as every technique has its own merits and demerits. Hence, a proper review of these techniques is essential. Unfortunately, very few attempts have been made in this regard, excepting two latest reviews on MPPT [Salas, 2006], [Esram and Chapman, 2007]. Since, MPPT is an essential part of a PV system, extensive research has been revealed in recent years in this field and many new techniques have been reported to the list since then. In this paper, a detailed description and then classification of the MPPT techniques have made based on features, such as number of control variables involved, types of control strategies employed, types of circuitry used suitably for PV system and practical/commercial applications. This paper is intended to serve as a convenient reference for future MPPT users in PV systems.

1,584 citations