scispace - formally typeset
Search or ask a question

Showing papers on "Grid-connected photovoltaic power system published in 2015"


01 Jan 2015
TL;DR: An overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems is presented in this paper.
Abstract: Photovoltaic (PV) energy has grown at an average annual rate of 60% in the last five years, surpassing one third of the cumulative wind energy installed capacity, and is quickly becoming an important part of the energy mix in some regions and power systems. This has been driven by a reduction in the cost of PV modules. This growth has also triggered the evolution of classic PV power converters from conventional singlephase grid-tied inverters to more complex topologies to increase efficiency, power extraction from the modules, and reliability without impacting the cost. This article presents an overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems. In addition, the recent research and emerging PV converter technology are discussed, highlighting their possible advantages compared with the present technology. Solar PV energy conversion systems have had a huge growth from an accumulative total power equal to approximately 1.2 GW in 1992 to 136 GW in 2013 (36 GW during 2013) [1]. This phenomenon has been possible because of several factors all working together to push the PV energy to cope with one important position today (and potentially a fundamental position in the near future). Among these factors are the cost reduction and increase in efficiency of the PV modules, the search for alternative clean energy sources (not based on fossil fuels), increased environmental awareness, and favorable political regulations from local governments (establishing feed-in tariffs designed to accelerate investment in renewable energy technologies). It has become usual to see PV systems installed on the roofs of houses or PV farms next to the roads in the countryside. Grid-connected PV systems account for more than 99% of the PV installed capacity compared to

772 citations


Journal ArticleDOI
TL;DR: An overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems is presented in this article.
Abstract: Photovoltaic (PV) energy has grown at an average annual rate of 60% in the last five years, surpassing one third of the cumulative wind energy installed capacity, and is quickly becoming an important part of the energy mix in some regions and power systems. This has been driven by a reduction in the cost of PV modules. This growth has also triggered the evolution of classic PV power converters from conventional single-phase grid-tied inverters to more complex topologies to increase efficiency, power extraction from the modules, and reliability without impacting the cost. This article presents an overview of the existing PV energy conversion systems, addressing the system configuration of different PV plants and the PV converter topologies that have found practical applications for grid-connected systems. In addition, the recent research and emerging PV converter technology are discussed, highlighting their possible advantages compared with the present technology.

772 citations


Journal ArticleDOI
TL;DR: In this article, the authors summarized existing research on PV self-consumption and options to improve it, namely energy storage and load management, also called demand side management (DSM), and showed that it is possible to increase the relative selfconsumption with a battery storage capacity of 0.5-1. kW.

701 citations


Journal ArticleDOI
TL;DR: The generation mechanism of leakage current is investigated and the concepts of dc-based and ac-based decoupling networks are proposed to not only cover the published symmetrical inductor-based topologies but also offer an innovative strategy to derive advanced inverters.
Abstract: Single-phase voltage source transformerless inverters have been developed for many years and have been successful commercial applications in the distributed photovoltaic (PV) grid-connected systems. Moreover, many advanced industrial topologies and recent innovations have been published in the last few years. The objective of this paper is to classify and review these recent contributions to establish the present state of the art and trends of the transformerless inverters. This can provide a comprehensive and insightful overview of this technology. First, the generation mechanism of leakage current is investigated to divide the transformerless inverters into asymmetrical inductor-based and symmetrical inductor-based groups. Then, the concepts of dc-based and ac-based decoupling networks are proposed to not only cover the published symmetrical inductor-based topologies but also offer an innovative strategy to derive advanced inverters. Furthermore, the transformation principle between the dc-based and ac-based topologies is explored to make a clear picture on the general law and framework for the recent advances and future trend in this area. Finally, a family of clamped highly efficient and reliable inverter concept transformerless inverters is derived and tested to offer some excellent candidates for next-generation high-efficiency and cost-effective PV grid-tie inverters.

553 citations


Journal ArticleDOI
TL;DR: In this article, a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications is presented.
Abstract: This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking control scheme is applied to both single- and three-phase multilevel inverters, which allows independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase seven-level cascaded H-bridge inverter has been built utilizing nine H-bridge modules (three modules per phase). Each H-bridge module is connected to a 185-W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.

478 citations


Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of the theoretical forecasting methodologies for both solar resource and PV power and applications of solar forecasting in energy management of smart grid are investigated in detail.
Abstract: Due to the challenge of climate and energy crisis, renewable energy generation including solar generation has experienced significant growth. Increasingly high penetration level of photovoltaic (PV) generation arises in smart grid. Solar power is intermittent and variable, as the solar source at the ground level is highly dependent on cloud cover variability, atmospheric aerosol levels, and other atmosphere parameters. The inherent variability of large-scale solar generation introduces significant challenges to smart grid energy management. Accurate forecasting of solar power/irradiance is critical to secure economic operation of the smart grid. This paper provides a comprehensive review of the theoretical forecasting methodologies for both solar resource and PV power. Applications of solar forecasting in energy management of smart grid are also investigated in detail.

428 citations


Journal ArticleDOI
TL;DR: In this article, the solar PV plant design aspects along with its annual performance is elaborated and various types of power losses (temperature, internal network, power electronics, grid connected etc.) and performance ratio are also calculated.

396 citations


Journal ArticleDOI
TL;DR: In this article, the authors extensively review the technical challenges associated with the integration of large-scale PV into the power system and discuss the technical solutions to overcome these challenges, and summarize the research findings about the technical solution to overcome power system stability challenges regarding the large scale PV integration into the transmission and subtransmission or medium voltage distribution system.
Abstract: Global warming is the main driving force behind worldwide interest for the generation of bulk electrical energy from renewable sources. As a consequence of advancements in solar cell fabrication and converter technology, solar PV has emerged as one of the most promising renewable sources for bulk power generation. If the current commissioning rate continues, PV power would lead to the modification of several aspects of power system and could influence the stability of the system. This paper extensively reviews the technical challenges, on particular, the stability issues associated with the integration of large-scale PV into the power system. In addition, the paper also reviews the dynamic model of large-scale PV for stability studies as well as the grid codes for large-scale PV integration into the system. Finally, this paper summarizes the research findings about the technical solutions to overcome the power system stability challenges regarding the large-scale PV integration into the transmission and sub-transmission or medium voltage distribution system.

362 citations


Journal ArticleDOI
TL;DR: In this paper, an artificial bee colony (ABC) algorithm was proposed for global MPP tracking under conditions of in-homogenous insolation, and numerical simulations carried out on two different PV configurations under different shading patterns strongly suggest that the proposed method is far superior to existing MPPT alternatives.
Abstract: For the maximum utilization of solar energy, photovoltaic (PV) power generation systems are operated at the maximum power point (MPP) under varying atmospheric conditions, and MPP tracking (MPPT) is generally achieved using several conventional methods. However, when partial shading occurs in a PV system, the resultant powervoltage (PV) curve exhibits multiple peaks and traditional methods that need not guarantee convergence to true MPP always. This paper proposes an artificial bee colony (ABC) algorithm for global MPP (GMPP) tracking under conditions of in-homogenous insolation. The formulation of the problem, application of the ABC algorithm, and the results are analyzed in this paper. The numerical simulations carried out on two different PV configurations under different shading patterns strongly suggest that the proposed method is far superior to existing MPPT alternatives. Experimental results are also provided to validate the new dispensation.

314 citations


Journal ArticleDOI
TL;DR: In this article, the optimal size of the photovoltaic (PV) generation system, diesel generator and the energy storage system in a stand-alone ship power system that minimizes the investment cost, fuel cost and the CO2 emissions is proposed.

296 citations


Journal ArticleDOI
TL;DR: The real-time constrained optimization problem is solved by using the particle swarm optimization method, which needs the knowledge of the actual current versus voltage curve of each PV generator to determine the best operating point of the system as a whole.
Abstract: Photovoltaic (PV) systems are one of the main actors in distributed power generation. In particular, in urban contexts, the PV generators can be subjected to mismatching phenomena due to the different orientation of the modules with respect to the sun rays or due to shadowing. In these cases, the maximum power point tracking (MPPT) function must be designed carefully. In this paper, architecture, including one dc/dc converter for each PV generator, is considered. The converters' output terminals are series connected to a high-voltage dc bus, where also a bidirectional dc/dc converter managing the power from/to a storage device is plugged. The functional constraints deriving from the dc/dc converters' connection, the mismatching phenomena, the MPPT capabilities of the inverter, connected with its input terminals at the dc bus, are taken into account in order to determine the best operating point of the system as a whole. The real-time constrained optimization problem is solved by using the particle swarm optimization method, which needs the knowledge of the actual current versus voltage curve of each PV generator. The practical impact of this need is also discussed in the paper. The feasibility and the performances of the proposed approach are experimentally validated by using a laboratory prototype.

Journal ArticleDOI
TL;DR: In this paper, the authors present a model developed to study the increase of selfconsumption of photovoltaic (PV) power by smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology.

Journal ArticleDOI
TL;DR: In this article, a brief overview of the different solar flat plate PV/T technologies, their efficiencies, applications, advantages, limitations and research opportunities available is given, as well as a comparison of different technologies.
Abstract: The increasing installed area of solar technologies around the world gives us an idea about the unlimited potential available in solar energy. This combined with the rising fossil fuel prices and frequent power outages, favor decentralized power generation among domestic consumers and small industries. However, the low energy of the solar PV module, the low exergy of the solar flat plate thermal collector and limited usable shadow-free space on building roof-tops could be overcome by the high overall (electrical and thermal) efficiency of a solar Photovoltaic Thermal (PV/T) system, which combines the electrical and thermal components in a single unit area. This paper gives a brief overview of the different solar flat plate PV/T technologies, their efficiencies, applications, advantages, limitations and research opportunities available.

Journal ArticleDOI
TL;DR: A reference generator capable to accomplish these two objectives: to keep the injected currents within safety values and to compute the power references for a better utilization of the inverter power capacity is presented.
Abstract: Distributed generation inverters have become a key element to improve grid efficiency and reliability, particularly during grid faults. Under these severe perturbations, inverter-based power sources should accomplish low-voltage ride-through requirements in order to keep feeding the grid and support the grid voltage. Also, rated current can be required to better utilize reactive power provisions. This paper presents a reference generator capable to accomplish these two objectives: to keep the injected currents within safety values and to compute the power references for a better utilization of the inverter power capacity. The reference generator is fully flexible since positive and negative active and reactive powers can be simultaneously injected to improve ride-through services. Selected experimental results are reported to evaluate the performance of the proposed reference generator under different control strategies.

Journal ArticleDOI
TL;DR: A comprehensive review of various methods reported in the literature and discusses various design and operating parameters influencing the cooling capacity for PV systems leading to an enhanced performance is provided in this paper, where various designs, such as air, liquid, heat pipes, phase change materials (PCMs), and thermoelectric (TE) devices, can be employed to aid cooling of PV cells.
Abstract: Photovoltaic (PV) cells can absorb up to 80% of the incident solar radiation available in the solar spectrum, however, only a certain percentage of the absorbed incident energy is converted into electricity depending on the conversion efficiency of the PV cell technology. The remainder of the energy is dissipated as heat accumulating on the surface of the cells causing elevated temperatures. Temperature rise of PV cells is considered as one of the most critical issues influencing their performance, causing serious degradation and shortening the life-time of the cells. Hence cooling of PV modules during operation is essential and must be an integral part of PV systems particularly in sun-drenched locations. Many researches have been conducted investigating a range of methods that can be employed to provide thermal management for PV systems. Among these designs, systems utilizing air, liquid, heat pipes, phase change materials (PCMs), and thermoelectric (TE) devices to aid cooling of PV cells. This paper provides a comprehensive review of various methods reported in the literature and discusses various design and operating parameters influencing the cooling capacity for PV systems leading to an enhanced performance.

Journal ArticleDOI
TL;DR: A design guideline for the CF-DAB converter applied to PV systems, as well as other applications with a wide input voltage variation, and an optimized operating mode is proposed to achieve the minimum root-mean-square transformer current.
Abstract: The current-fed dual active bridge (CF-DAB) dc–dc converter gains growing applications in photovoltaic (PV) and energy storage systems due to its advantages, e.g., a wide input voltage range, a high step-up ratio, a low input current ripple, and a multiport interface capability. In addition, the direct input current controllability and extra control freedom of the CF-DAB converter make it possible to buffer the double-line-frequency energy in grid-interactive PV systems without using electrolytic capacitors in the dc link. Therefore, a PV system achieves high reliability and highly efficient maximum power point tracking. This paper studies the optimized operation of a CF-DAB converter for a PV application in order to improve the system efficiency. The operating principle and soft-switching conditions over the wide operating range are thoroughly analyzed with phase-shift control and duty-cycle control, and an optimized operating mode is proposed to achieve the minimum root-mean-square transformer current. The proposed operating mode can extend the soft-switching region and reduce the power loss, particularly under a heavy load and a high input voltage. Moreover, the efficiency can be further improved with a higher dc-link voltage. A 5-kW hardware prototype was built in the laboratory, and experimental results are provided for verification. This paper provides a design guideline for the CF-DAB converter applied to PV systems, as well as other applications with a wide input voltage variation.

Journal ArticleDOI
TL;DR: In this paper, the importance of low voltage ride-through (LVRT) for single-phase PV power systems under grid faults is considered, along with three reactive power injection strategies.
Abstract: Current grid standards largely require that low-power (e.g., several kilowatts) single-phase photovoltaic (PV) systems operate at unity power factor (PF) with maximum power point tracking (MPPT), and disconnect from the grid under grid faults by means of islanding detection. However, in the case of wide-scale penetration of single-phase PV systems in the distributed grid, disconnection under grid faults can contribute to 1) voltage flickers, 2) power outages, and 3) system instability. This article explores grid code modifications for a wide-scale adoption of PV systems in the distribution grid. In addition, based on the fact that Italy and Japan have recently undertaken a major review of standards for PV power conversion systems connected to low-voltage networks, the importance of low voltage ride-through (LVRT) for single-phase PV power systems under grid faults is considered, along with three reactive power injection strategies. Simulations are presented for a PV power system with a LVRT capability and ancillary services. An example of a full-bridge single-phase grid connected system is tested experimentally to demonstrate the potential benefits. Additionally, grid codes for advanced PV systems with the discussed features are summarized.

Journal ArticleDOI
TL;DR: A heuristic operation strategy for commercial building microgrids that can be utilized in embedded systems for real-time allocation of EV charging rate and designed to operate without forecasting on photovoltaic output or EV charging demand.
Abstract: Commercial building microgrids will play an important role in the smart energy city. Stochastic and uncoordinated electric vehicle (EV) charging activities, which may cause performance degradations and overloads, have put great stress on the distribution system. In order to improve the self-consumption of PV energy and reduce the impact on the power grid, a heuristic operation strategy for commercial building microgrids is proposed. The strategy is composed of three parts: the model of EV feasible charging region, the mechanism of dynamical event triggering, and the algorithm of real-time power allocation for EVs. Furthermore, in order to lower the cost of computation resource, the strategy is designed to operate without forecasting on photovoltaic output or EV charging demand. A comprehensive result obtained from simulation tests has shown that the proposed strategy has both satisfactory results and high efficiency, which can be utilized in embedded systems for real-time allocation of EV charging rate.

Journal ArticleDOI
TL;DR: Results of the simulation and experiment using single-ended primary-inductor converter showed that the response of the proposed algorithm is four times faster than the conventional incremental conductance algorithm during the load and solar irradiation variation.
Abstract: Under fast varying solar irradiation and load resistance, a fast-converging maximum power point tracking system is required to ensure the photovoltaic system response rapidly with minimum power losses. Traditionally, maximum power point locus was used to provide such a fast response. However, the algorithm requires extra control loop or intermittent disconnection of the PV module. Hence, this paper proposes a simpler fast-converging maximum power point tracking technique, which excludes the extra control loop and intermittent disconnection. In the proposed algorithm, the relationship between the load line and the I-V curve is used with trigonometry rule to obtain the fast response. Results of the simulation and experiment using single-ended primary-inductor converter showed that the response of the proposed algorithm is four times faster than the conventional incremental conductance algorithm during the load and solar irradiation variation. Consequently, the proposed algorithm has higher efficiency.

Journal ArticleDOI
TL;DR: In this paper, a grid relieving management strategy for the storage system in due consideration of self-consumption is presented in order to analyze the potential of private home battery storage systems to reduce stress on the power supply system.

Journal ArticleDOI
TL;DR: A novel charging strategy for the PV-based battery switch station can effectively improve the self-consumption of PV energy with the premise of guaranteeing the availability of the battery-swapping service.
Abstract: The photovoltaic (PV)-based battery switch station (BSS) is one of typical integration systems to implement a solar-to-vehicle system The charging strategy is important for the operation of the PV-based BSS Generally, instant charging strategy for swapped electric vehicle (EV) batteries can keep the availability of battery-swapping service at a high level However, it is always accompanied with the possibility of bringing a negative effect on the utilization of PV energy The contribution of this paper is mainly on a novel charging strategy for the PV-based BSS considering the service availability and self-consumption of the PV energy First, considering the features of the PV-based BSS, evaluation indexes for the operation performance are defined, including the availability of battery-swapping service, self-consumption of the PV energy, and operation profit Second, the charging strategy is proposed, including a battery-swapping service model and a power distribution model In order to guarantee the service availability, the battery-swapping service model is used to decide the lower limit of charging power based on short-term forecasting results of EV requirements The power distribution model is obliged to dispatch the charging power supplied by the PV system and power grid Finally, in the case study, the operation of the BSS is simulated with the instant charging strategy and the proposed strategy under different scenarios From the analysis of results, the proposed strategy can effectively improve the self-consumption of PV energy with the premise of guaranteeing the availability of the battery-swapping service

Journal ArticleDOI
TL;DR: In this paper, a decoupled active and reactive power control strategy was proposed to enhance system operation performance in large-scale grid-connected photovoltaic (PV) systems.
Abstract: Large-scale grid-connected photovoltaic (PV) systems significantly contribute to worldwide renewable energy growth and penetration, which has inspired the application of cascaded modular multilevel converters due to their unique features such as modular structures, enhanced energy harvesting capability, scalability and so on However, power distribution and control in the cascaded PV system faces tough challenge on output voltage overmodulation when considering the varied and nonuniform solar energy on segmented PV arrays This paper addresses this issue and proposes a decoupled active and reactive power control strategy to enhance system operation performance The relationship between output voltage components of each module and power generation is analyzed with the help of a newly derived vector diagram which illustrates the proposed power distribution principle On top of this, an effective control system including active and reactive components extraction, voltage distribution and synthesization, is developed to achieve independent active and reactive power distribution and mitigate the aforementioned issue Finally, a 3-MW, 12-kV PV system with the proposed control strategy is modeled and simulated in MATLAB and PSIM cosimulation platform A downscaled PV system including two cascaded 5-kW converters with proposed control strategy is also implemented in the laboratory Simulation and experimental results are provided to demonstrate the effectiveness of the proposed control strategy for large-scale grid-connected cascaded PV systems

Journal ArticleDOI
TL;DR: In this article, a comparative simulation study of different solar energy solutions for a Norwegian residential building concept aiming for a net zero energy balance is presented, where separate PV and solar thermal systems are compared to PV/T systems, and the resulting energy balances analyzed.

Journal ArticleDOI
TL;DR: In this article, an off-grid (stand-alone) photovoltaic (PV) system for electrification of a single residential household in the city of Faisalabad, Pakistan is presented.
Abstract: This paper presents a study about an off-grid (stand-alone) photovoltaic (PV) system for electrification of a single residential household in the city of Faisalabad, Pakistan (31.42°N, 73.08°E, 184 m). The system has been designed keeping in view the required household load and energy available from the sun. The complete model for the sizing of complete PV system has been presented to determine the required PV power rating, battery storage capacity, size of charge controller and inverter to fulfill the required load. Using this model, the peak power and area of PV modules, capacity of battery backup, size of charge controller and inverter was calculated to be 1928 Wp and 12.85 m2, 9640.5 W h, 56.65 A and 1020 W, respectively. The economics evaluation using life cycle cost (LCC) analysis of the complete system has also been carried out. The LCC of the system was found to be PKR. 457,306 whereas the annualized life cycle cost (ALCC) was determined to be PKR. 31,963 yr−1, respectively. The unit electricity cost has also been calculated and was found to be PKR. 14.8 kW h−1. The results show that unit cost of electricity produced using off-grid PV system is lower than the unit cost charged in case of conventional electric supply to the residential areas. It is concluded that off-PV electricity is technically and economically viable technology for the electrification of residential applications.

Journal ArticleDOI
TL;DR: In this article, a classic coordinated charging strategy for EVs is adapted in a three-phase four-wire distribution grid, which can host significantly more distributed generation and electric vehicles, without overloading the inverter or charger.
Abstract: Balanced three-phase four-wire distribution grids can host significantly more distributed generation and electric vehicles. Three-phase photovoltaic (PV) inverters and electric vehicle (EV) chargers can be adapted to transfer power from highly loaded to less loaded phases, without overloading the inverter or charger. Grid conditions will be improved due to a more balanced operation of the network and more PV panels and EVs can be connected before the limits of the network are reached. A classic coordinated charging strategy for EVs is adapted in this paper. It is shown that the charging of EVs can be improved when power can be transferred from one phase to another. Using PV inverters with a balancing inverter, the power injected in each phase will become a controllable variable as the total amount of produced power does not necessarily need to be equally divided across the three phases. The improvements made by using EV chargers and PV inverters that can balance the network are investigated. Several load flow simulations with realistic data show a positive effect on the system losses, the grid voltage, and voltage unbalance. Finally, a local controller is proposed to control the balancing between the phases when a real-time communication channel is not available.

Journal ArticleDOI
TL;DR: In this paper, an optimized reactive power compensation algorithm (RPCA) is proposed to improve the system operation stability and reliability, and facilitate MPPT implementation for each converter module simultaneously.
Abstract: Cascaded multilevel converter structure can be appealing for high-power solar photovoltaic (PV) systems thanks to its modularity, scalability, and distributed maximum power point tracking (MPPT). However, the power mismatch from cascaded individual PV converter modules can bring in voltage and system operation issues. This paper addresses these issues, explores the effects of reactive power compensation and optimization on system reliability and power quality, and proposes coordinated active and reactive power distribution to mitigate this issue. A vector method is first developed to illustrate the principle of power distribution. Accordingly, the relationship between power and voltage is analyzed with a wide operation range. Then, an optimized reactive power compensation algorithm (RPCA) is proposed to improve the system operation stability and reliability, and facilitate MPPT implementation for each converter module simultaneously. Furthermore, a comprehensive control system with the RPCA is designed to achieve effective power distribution and dynamic voltage regulation. Simulation and experimental results are presented to demonstrate the effectiveness of the proposed reactive power compensation approach in grid-interactive cascaded PV systems.

Journal ArticleDOI
TL;DR: In this paper, a fault-tolerant single-phase five-level inverter configuration is proposed for photovoltaic (PV) generation systems, which is constructed by using a half-bridge two-level, a three-level diode clamp inverter, and a bidirectional switch.
Abstract: In this paper, a fault-tolerant single-phase five-level inverter configuration is proposed for photovoltaic (PV) generation systems. Conventional two-level inverters are popularly used in PV applications, but these inverters provide the output voltage with considerable harmonic content. One of the efficient ways to improve the power quality of PV generation systems is to replace a two-level inverter with a multilevel inverter. Conventional multilevel inverters reduce total harmonic distortion and filter requirements effectively, but it has limitations in terms of reliability due to increased device count and capacitor voltage balancing issues. Therefore, a fault-tolerant single-phase five-level inverter is presented, which is constructed by using a half-bridge two-level inverter, a three-level diode clamp inverter, and a bidirectional switch. The proposed inverter topology can tolerate the system faults due to failure of the source and/or switching devices with least modification in the switching combinations. It has less number of switching devices compared to conventional five-level inverters. The topology also has the energy-balancing capability between sources which helps in reducing uneven charge of batteries in case of partial shading or hotspots on one side of the PV panels. The proposed system under normal and faulty condition is simulated in MATLAB/Simulink environment, and results are verified with a laboratory prototype.

Journal ArticleDOI
TL;DR: In the context of climate change in the world at the global level, various actions are taken for the development of renewable Energy and particularly solar energy which have potential for future energy applications.
Abstract: In the context of climate change in the world at the global level, various actions are taken for the development of renewable Energy and particularly solar energy which have potential for future energy applications. The current popular technology converts solar energy into electricity and heat separately. The photovoltaic thermal (PVT) system is designed to generate thermal and electrical energy simultaneously. A major research and development work on the photovoltaic thermal (PVT) hybrid technology has been done since last 30 years. Different types of solar thermal collector and new materials for PV cells have been developed for efficient solar energy utilization. The photovoltaic (PV) cells suffer efficiency drop as their operating temperature increases especially under high insolation levels. The overall electrical efficiency of the photovoltaic (PV) module can be increased by reducing the temperature of the PV module by withdrawing the thermal energy associated with the PV module. Both water and air either by forced or natural flow has been used for PV cooling through a thermal unit attached to the back of the module yielding photovoltaic thermal (PVT) collector. The main purpose of heat extraction unit is to extract heat from the photovoltaic system and keep its temperature at satisfactory level so that it can work efficiently. Till date many researchers have done a lot of work and number of studies have been carried out in designing, simulation, modeling, and testing of these systems. This paper reviews on the state and development of PVT technology around the world but the studies includes experimental and analytical are mainly focused on photovoltaic thermal technologies at the Indian subcontinent.

Journal ArticleDOI
TL;DR: In this paper, the perturb and observe (P&O) algorithm is used for photovoltaic (PV) generators at high perturbation frequencies, when the system response to MPPT perturbations is never allowed to settle.
Abstract: The perturb and observe (P&O) algorithm is one of the most commonly utilized maximum power point tracking (MPPT) control schemes for photovoltaic (PV) generators. However, the operation of this algorithm at high perturbation frequencies, when the system response to MPPT perturbations is never allowed to settle, has not been given adequate attention in the literature. This paper characterizes system behavior in this mode of operation for standalone PV systems feeding resistive loads and motor-pump loads. Simulation and experimental results show that the P&O algorithm operating at a high perturbation frequency may offer higher energy utilization efficiency and better system performance, despite the resulting nonperiodic waveforms of the system.

Journal ArticleDOI
TL;DR: This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications that achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters.
Abstract: This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented. The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.