scispace - formally typeset
Search or ask a question
Topic

Grid-connected photovoltaic power system

About: Grid-connected photovoltaic power system is a research topic. Over the lifetime, 12066 publications have been published within this topic receiving 245535 citations. The topic is also known as: grid-connected PV power system.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the challenges of integrating solar power to the electricity distribution system, a technical overview of battery energystorage systems, and a variety of modes of operation for battery energy storage systems in grid-tied solar applications are presented.
Abstract: As solar photovoltaic power generation becomes more commonplace, the inherent intermittency of the solar resource poses one of the great challenges to those who would design and implement the next generation smart grid. Specifically, grid-tied solar power generation is a distributed resource whose output can change extremely rapidly, resulting in many issues for the distribution system operator with a large quantity of installed photovoltaic devices. Battery energy storage systems are increasingly being used to help integrate solar power into the grid. These systems are capable of absorbing and delivering both real and reactive power with sub-second response times. With these capabilities, battery energy storage systems can mitigate such issues with solar power generation as ramp rate, frequency, and voltage issues. Beyond these applications focusing on system stability, energy storage control systems can also be integrated with energy markets to make the solar resource more economical. Providing a high-level introduction to this application area, this paper presents an overview of the challenges of integrating solar power to the electricity distribution system, a technical overview of battery energy storage systems, and illustrates a variety of modes of operation for battery energy storage systems in grid-tied solar applications. The real-time control modes discussed include ramp rate control, frequency droop response, power factor correction, solar time-shifting, and output leveling.

712 citations

Journal ArticleDOI
16 May 2011
TL;DR: In this article, the authors discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters, and find that local control schemes are able to maintain voltage within acceptable bounds.
Abstract: High-penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g., by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e., local). In general, we find that local control schemes are able to maintain voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

707 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized existing research on PV self-consumption and options to improve it, namely energy storage and load management, also called demand side management (DSM), and showed that it is possible to increase the relative selfconsumption with a battery storage capacity of 0.5-1. kW.

701 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of increased penetration of photovoltaic (PV) systems on static performance as well as transient stability of a large power system, in particular the transmission system, is examined.
Abstract: Present renewable portfolio standards are changing power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. With the increase in penetration of PV resources, power systems are expected to experience a change in dynamic and operational characteristics. This paper studies the impact of increased penetration of PV systems on static performance as well as transient stability of a large power system, in particular the transmission system. Utility scale and residential rooftop PVs are added to the aforementioned system to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The studied system is a large test system representing a portion of the Western U.S. interconnection. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance.

687 citations

Journal ArticleDOI
TL;DR: This paper presents the intelligent PV module concept, a low-cost high-efficiency dc-dc converter with maximum power point tracking (MPPT) functions, control, and power line communications (PLC), and analyses the alternatives for the architecture of grid-connected PV systems: centralized, string, and modular topologies.
Abstract: Most issues carried out about building integrated photovoltaic (PV) system performance show average losses of about 20%-25% in electricity production. The causes are varied, e.g., mismatching losses, partial shadows, variations in current-voltage (I-V) characteristics of PV modules due to manufacturing processes, differences in the orientations and inclinations of solar surfaces, and temperature effects. These losses can be decreased by means of suitable electronics. This paper presents the intelligent PV module concept, a low-cost high-efficiency dc-dc converter with maximum power point tracking (MPPT) functions, control, and power line communications (PLC). In addition, this paper analyses the alternatives for the architecture of grid-connected PV systems: centralized, string, and modular topologies. The proposed system, i.e., the intelligent PV module, fits within this last group. Its principles of operation, as well as the topology of boost dc-dc converter, are analyzed. Besides, a comparison of MPPT methods is performed, which shows the best results for the incremental conductance method. Regarding communications, PLC in every PV module and its feasibility for grid-connected PV plants are considered and analyzed in this paper. After developing an intelligent PV module (with dc-dc converter) prototype, its optimal performance has been experimentally confirmed by means of the PV system test platform. This paper describes this powerful tool especially designed to evaluate all kinds of PV systems

649 citations


Network Information
Related Topics (5)
Photovoltaic system
103.9K papers, 1.6M citations
91% related
Electric power system
133K papers, 1.7M citations
90% related
Wind power
99K papers, 1.5M citations
87% related
Voltage
296.3K papers, 1.7M citations
83% related
Solar energy
73.2K papers, 1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023135
2022299
202162
202081
201986
2018169