scispace - formally typeset
Search or ask a question
Topic

Ground bounce

About: Ground bounce is a research topic. Over the lifetime, 1145 publications have been published within this topic receiving 16204 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an active gate voltage control (AGVC) method is presented to control the values of at turnon and at turn-off for insulated gate power transistors, by acting directly on the input gate voltage shape.
Abstract: As the characteristics of insulted gate transistors [like metal–oxide–semiconductor field-effect transistors and insulated gate bipolar transistors (IGBTs)] have been constantly improving, their utilization in power converters operating at higher and higher frequencies has become more common. However, this, in turn, leads to fast current and voltage transitions that generate large amounts of electromagnetic interferences over wide frequency ranges. In this paper, a new active gate voltage control (AGVC) method is presented. It allows us to control the values of at turn-on and at turn-off for insulated gate power transistors, by acting directly on the input gate voltage shape. In an elementary switching cell, it enables us to strongly reduce over-current generated by the reverse recovery of the free-wheeling diode at turn-on, and oscillations of the output voltage across the transistor at turn-off. In the following sections, the AGVC in open and closed-loop for IGBT is presented, and its performance is compared with that of a more conventional method, i.e., increasing the gate resistance. Robustness of the AGVC is estimated under variations of dc-voltage supply and transistor switched current.

258 citations

Journal ArticleDOI
TL;DR: In this paper, an effective method for suppressing PCB radiation from their power bus over an ultrawide range of frequencies by using metallo-dielectric electromagnetic band-gap structures was introduced.
Abstract: As digital circuits become faster and more powerful, direct radiation from the power bus of their printed circuit boards (PCB) becomes a major concern for electromagnetic compatibility engineers. In such multilayer PCBs, the power and ground planes act as radiating microstrip patch antennas, where radiation is caused by fringing electric fields at board edges. In this paper, we introduce an effective method for suppressing PCB radiation from their power bus over an ultrawide range of frequencies by using metallo-dielectric electromagnetic band-gap structures. More specifically, this study focuses on the suppression of radiation from parallel-plate bus structures in high-speed PCBs caused by switching noise, such as simultaneous switching noise, also known as Delta-I noise or ground bounce. This noise consists of unwanted voltage fluctuations on the power bus of a PCB due to resonance of the parallel-plate waveguiding system created by the power bus planes. The techniques introduced here are not limited to the suppression of switching noise and can be extended to any wave propagation between the plates of the power bus. Laboratory PCB prototypes were fabricated and tested revealing appreciable suppression of radiated noise over specific frequency bands of interest, thus, testifying to the effectiveness of this concept.

225 citations

Journal ArticleDOI
TL;DR: In this article, a power/ground planes design for efficiently eliminating the ground bounce noise (GBN) in high-speed digital circuits is proposed by using low-period coplanar electromagnetic bandgap (LPC-EBG) structure.
Abstract: A power/ground planes design for efficiently eliminating the ground bounce noise (GBN) in high-speed digital circuits is proposed by using low-period coplanar electromagnetic bandgap (LPC-EBG) structure. Keeping solid for the ground plane and designing an LPC-EBG pattern on the power plane, the proposed structure omnidirectionally behaves highly efficiently in suppression of GBN (over 50 dB) within the broad-band frequency range (over 4 GHz). In addition, the proposed designs suppress radiated emission (or electromagnetic interference) caused by the GBN within the stopband. These extinctive behaviors of low radiation and broad-band suppression of the GBN is demonstrated numerically and experimentally. Good agreements are seen. The impact of the LPC-EBG power plane on the signal integrity for the signals referring to the power plane is investigated. Two possible solutions, differential signals and an embedded LPC-EBG power plane concept, are suggested and discussed to reduce the impact.

214 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the threshold voltage instabilities of all-organic thin-film transistors as a function of stress time and stress bias and found that the dominant effect is a positive threshold shift for negative gate bias stress which is explained by mobile ions drifting in the insulator when a gate field is applied.
Abstract: Threshold voltage instabilities of all-organic thin-film transistors are investigated as a function of stress time and stress bias. The dominant effect is a positive threshold shift for negative gate bias stress which is explained by mobile ions drifting in the insulator when a gate field is applied. Trapping of charge carriers at the semiconductor–insulator interface plays only a minor role. Furthermore, we investigate the stress behavior of a basic logic element, an inverter. In comparison to a single transistor, we observe improved stability which arises from partial compensation of the parametric shifts during operation.

212 citations

Patent
Jyh-Chyurn Guo1
16 Jul 2001
TL;DR: In this article, a gate structure consisting of pre-doped polysilicon was constructed with a high-k gate dielectric, and air-gap spacers were formed over a stacked gate structure.
Abstract: A new method is provided for the creation of sub-micron gate electrode structures. A high-k dielectric is used for the gate dielectric, providing increased inversion carrier density without having to resort to aggressive scaling of the thickness of the gate dielectric while at the same time preventing excessive gate leakage current from occurring. Further, air-gap spacers are formed over a stacked gate structure. The gate structure consists of pre-doped polysilicon of polysilicon-germanium, thus maintaining superior control over channel inversion carriers. The vertical field between the gate structure and the channel region of the gate is maximized by the high-k gate dielectric, capacitive coupling between the source/drain regions of the structure and the gate electrode is minimized by the gate spacers that contain an air gap.

208 citations


Trending Questions (1)
Network Information
Related Topics (5)
Integrated circuit
82.7K papers, 1M citations
86% related
CMOS
81.3K papers, 1.1M citations
84% related
Electronic circuit
114.2K papers, 971.5K citations
82% related
Transistor
138K papers, 1.4M citations
82% related
Semiconductor device
56.4K papers, 644.3K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20227
20211
20203
20195
201811
201716