scispace - formally typeset
Search or ask a question

Showing papers on "Growing season published in 2007"


Journal ArticleDOI
TL;DR: In this article, a combination of graphical and statistical analyses were performed on a 12-month time-series of MODIS EVI and NDVI data from more than 2000 cropped field sites across the U.S. state of Kansas.

756 citations


Journal ArticleDOI
TL;DR: The ORganizing Carbon and Hydrology In Dynamic Ecosystems process based ecosystem model together with observed climate data is used to investigate spatiotemporal changes in phenology and their impacts on carbon fluxes in the Northern Hemisphere during 1980–2002 and suggested that the GSL strongly correlates with annual gross primary productivity (GPP) and netPrimary productivity (NPP), indicating that longer growing seasons may eventually enhance vegetation growth.
Abstract: [1] A number of studies have suggested that the growing season duration has significantly lengthened during the past decades, but the connections between phenology variability and the terrestrial carbon (C) cycle are far from clear. In this study, we used the “ORganizing Carbon and Hydrology In Dynamic Ecosystems” (ORCHIDEE) process based ecosystem model together with observed climate data to investigate spatiotemporal changes in phenology and their impacts on carbon fluxes in the Northern Hemisphere (>25°N) during 1980–2002. We found that the growing season length (GSL) has increased by 0.30 days yr−1 (R2 = 0.27, P = 0.010), owing to the combination of an earlier onset in spring (0.16 days yr−1) and a later termination in autumn (0.14 days yr−1). Trends in the GSL are however highly variable across the regions. In Eurasia, there is a significant trend toward earlier vegetation green-up with an overall advancement rate of 0.28 days yr−1 (R2 = 0.32, P = 0.005), while in North America there is a significantly delayed vegetation senescence by 0.28 days yr−1 (R2 = 0.26, P = 0.013) during the study period. Our results also suggested that the GSL strongly correlates with annual gross primary productivity (GPP) and net primary productivity (NPP), indicating that longer growing seasons may eventually enhance vegetation growth. A 1-day extension in GSL leads to an increase in annual GPP of 5.8 gC m−2 yr−1 (or 0.6% per day), and an increase in NPP of 2.8 gC m−2 yr−1 per day. However, owing to enhanced soil carbon decomposition accompanying the GPP increase, a change in GSL correlates only poorly with a change in annual net ecosystem productivity (NEP).

597 citations


Journal ArticleDOI
TL;DR: The existence of soil moisture thresholds that control establishment provides insights into plant population dynamics in dry environments.
Abstract: Summary 1Seedling survival is one of the most critical stages in a plant's life history, and is often reduced by drought and soil desiccation. It has been hypothesized that root systems accessing moist soil layers are critical for establishment, but very little is known about seedling root growth and traits in the field. 2We related seedling mortality to the presence of deep roots in a field experiment in which we monitored soil moisture, root growth and seedling survival in five Mediterranean woody species from the beginning of the growing season until the end of the drought season. 3We found strong positive relationships between survival and maximum rooting depth, as well as between survival and soil moisture. Species with roots in moist soil layers withstood prolonged drought better, whereas species with shallow roots died more frequently. In contrast, biomass allocation to roots was not related to establishment success. 4Access to moist soil horizons accounted for species-specific survival rates, whereas large root : shoot (R:S) ratios did not. The existence of soil moisture thresholds that control establishment provides insights into plant population dynamics in dry environments.

416 citations


Journal ArticleDOI
TL;DR: In this article, the authors measured CO2 fluxes over and under an oak-grass savanna and over a proximate grassland in California using the eddy covariance technique.

381 citations


Journal ArticleDOI
TL;DR: The findings suggest that the rangelands on the Tibetan Plateau, and the pastoralists who depend on them, may be vulnerable to future climate changes and grazing may be an important tool to keep warming-induced shrub expansion in check.
Abstract: We investigated experimental warming and simulated grazing ( clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer- grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity ( ANPP) by 40 g . m(-2) . yr(-1) at the meadow habitats and decreased palatable ANPP ( total ANPP minus non- palatable forb ANPP) by 10 g . m(-2) . yr(-1) at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non- palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland habitats, warming resulted in less digestible shrubs, whose foliage contains 25% digestible dry matter ( DDM), replacing more digestible graminoids, whose foliage contains 60% DDM. This shift from graminoids to shrubs not only results in lower- quality forage, but could also have important consequences for future domestic herd composition. Although warming extended the growing season in non- clipped plots, the reduced rangeland quality due to decreased vegetative production and nutritive quality will likely overwhelm the improved rangeland quality associated with an extended growing season.Grazing maintained or improved rangeland quality by increasing total ANPP by 20 - 40 g . m(-2) . yr(-1) with no effect on palatable ANPP. Grazing effects on forage nutritive quality, as measured by foliar nitrogen and carbon content and by shifts in plant group ANPP, resulted in improved forage quality. Grazing extended the growing season at both habitats, and it advanced the growing season at the meadows. Synergistic interactions between warming and grazing were present, such that grazing mediated the warming- induced declines in vegetation production and nutritive quality. Moreover, combined treatment effects were nonadditive, suggesting that we cannot predict the combined effect of global changes and human activities from single- factor studies.Our findings suggest that the rangelands on the Tibetan Plateau, and the pastoralists who depend on them, may be vulnerable to future climate changes. Grazing can mitigate the negative warming effects on rangeland quality. For example, grazing management may be an important tool to keep warming- induced shrub expansion in check. Moreover, flexible and opportunistic grazing management will be required in a warmer future.

361 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the software TIMESAT to estimate phenological parameters from the GIMMS AVHRR NDVI dataset, and found significant positive trends for the length of the growing and end of growing season for the Soudan and Guinean regions, but significant trends in the Sahel could not be detected.

334 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed field data on N 2 O emission from paddy fields during the rice growing season (71 measurements from 17 field studies) that were published in peer-reviewed Chinese and English journals.

252 citations


Journal ArticleDOI
TL;DR: The magnitude of responses to warming and drought depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level.
Abstract: We used a nonintrusive field experiment carried out at six sites – Wales (UK), Denmark (DK), the Netherlands (NL), Hungary (HU), Sardinia (Italy – IT), and Catalonia (Spain – SP) – along a climatic and latitudinal gradient to examine the response of plant species richness and primary productivity to warming and drought in shrubland ecosystems. The warming treatment raised the plot daily temperature by ca. 1 °C, while the drought treatment led to a reduction in soil moisture at the peak of the growing season that ranged from 26% at the SP site to 82% in the NL site. During the 7 years the experiment lasted (1999–2005), we used the pin-point method to measure the species composition of plant communities and plant biomass, litterfall, and shoot growth of the dominant plant species at each site. A significantly lower increase in the number of species pin-pointed per transect was found in the drought plots at the SP site, where the plant community was still in a process of recovering from a forest fire in 1994. No changes in species richness were found at the other sites, which were at a more mature and stable state of succession and, thus less liable to recruitment of new species. The relationship between annual biomass accumulation and temperature of the growing season was positive at the coldest site and negative at the warmest site. The warming treatment tended to increase the aboveground net primary productivity (ANPP) at the northern sites. The relationship between annual biomass accumulation and soil moisture during the growing season was not significant at the wettest sites, but was positive at the driest sites. The drought treatment tended to reduce the ANPP in the NL, HU, IT, and SP sites. The responses to warming were very strongly related to the Gaussen aridity index (stronger responses the lower the aridity), whereas the responses to drought were not. Changes in the annual aboveground biomass accumulation, litterfall, and, thus, the ANPP, mirrored the interannual variation in climate conditions: the most outstanding change was a decrease in biomass accumulation and an increase in litterfall at most sites during the abnormally hot year of 2003. Species richness also tended to decrease in 2003 at all sites except the cold and wet UK site. Species-specific responses to warming were found in shoot growth: at the SP site, Globularia alypum was not affected, while the other dominant species, Erica multiflora, grew 30% more; at the UK site, Calluna vulgaris tended to grow more in the warming plots, while Empetrum nigrum tended to grow less. Drought treatment decreased plant growth in several studied species, although there were some species such as Pinus halepensis at the SP site or C. vulgaris at the UK site that were not affected. The magnitude of responses to warming and drought thus depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level. Decreases in biodiversity and the increase in E. multiflora growth at the SP site as a response to warming challenge the assumption that sensitivity to warming may be less well developed at more southerly latitudes; likewise, the fact that one of the studied shrublands presented negative ANPP as a response to the 2003 heat wave also challenges the hypothesis that future climate warming will lead to an enhancement of plant growth and carbon sequestration in temperate ecosystems. Extreme events may thus change the general trend of increased productivity in response to warming in the colder sites.

247 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the CERES-Maize model with experimental data collected during three field experiments conducted in Piracicaba, SP, Brazil and showed that the model was able to simulate phenology and grain yield accurately, with normalized RMSE (expressed in percentage) less than 15%.

244 citations


Journal ArticleDOI
TL;DR: In this article, an eddy covariance flux tower on an Old Black Spruce (OBS) site in eastern Canada (EOBS, Quebec) provided a first opportunity to compare and contrast its annual (2004) and seasonal C exchange with two other pre-existing OBS flux sites from different climatic regions located in Saskatchewan [SOBS] and Manitoba [Northern OBS (NOBS).
Abstract: Although mature black spruce forests are a dominant cover type in the boreal forest of North America, it is not clear how their carbon (C) budgets vary across the continent. The installation of an eddy covariance flux tower on an Old Black Spruce (OBS) site in eastern Canada (EOBS, Quebec) provided a first opportunity to compare and contrast its annual (2004) and seasonal C exchange with two other pre-existing OBS flux sites from different climatic regions located in Saskatchewan [Southern OBS (SOBS)] and Manitoba [Northern OBS (NOBS)]. Although there was a relatively uniform seasonal pattern of net ecosystem productivity (NEP) among sites, EOBS had a lower total annual NEP than the other two sites. This was primarily because warmer soil under a thicker snowpack at EOBS appeared to increase winter C losses and low light suppressed both NEP and gross ecosystem productivity (GEP) in June. Across sites, greater total annual GEP and ecosystem respiration (R) were associated with greater mean annual air temperatures and an earlier beginning of the growing season. Also, GEP at all three sites showed a stronger relationship with air temperature in spring and early summer compared with later in the growing season, highlighting the importance of springtime conditions to the C budget of these boreal ecosystems. The three sites had different parameter estimates describing the responses of R and GEP at the half hour time scale to near surface temperature and light, respectively. On the other hand, the responses of both R and GEP to temperature at the monthly scale did not differ among sites. These results suggest that a general parameterization could be sufficient at coarse time resolutions to model the response of C exchange to environmental factors of mature black spruce forests from different climatic regions.

237 citations


Journal ArticleDOI
TL;DR: Evidence from the mesic tundra site shows that any disturbance causing reduction in the depth of the moss layer will alleviate temperature and moisture constraints and therefore profoundly influence a wide range of ecosystem processes, including nutrient cycling and energy transfer.
Abstract: Mosses dominate many northern ecosystems and their presence is integral to soil thermal and hydrological regimes which, in turn, dictate important ecological processes. Drivers, such as climate change and increasing herbivore pressure, affect the moss layer thus, assessment of the functional role of mosses in determining soil characteristics is essential. Field manipulations conducted in high arctic Spitsbergen (78° N), creating shallow (3 cm), intermediate (6 cm) and deep (12 cm) moss layers over the soil surface, had an immediate impact on soil temperature in terms of both average temperatures and amplitude of fluctuations. In soil under deep moss, temperature was substantially lower and organic layer thaw occurred 4 weeks later than in other treatment plots; the growing season for vascular plants was thereby reduced by 40%. Soil moisture was also reduced under deep moss, reflecting the influence of local heterogeneity in moss depth, over and above the landscape-scale topographic control of soil moisture. Data from field and laboratory experiments show that moss-mediated effects on the soil environment influenced microbial biomass and activity, resulting in warmer and wetter soil under thinner moss layers containing more plant-available nitrogen. In arctic ecosystems, which are limited by soil temperature, growing season length and nutrient availability, spatial and temporal variation in the depth of the moss layer has significant repercussions for ecosystem function. Evidence from our mesic tundra site shows that any disturbance causing reduction in the depth of the moss layer will alleviate temperature and moisture constraints and therefore profoundly influence a wide range of ecosystem processes, including nutrient cycling and energy transfer.

Journal ArticleDOI
TL;DR: In this paper, the authors experimentally warmed 40 large, naturally established, white spruce seedlings at alpine treeline in southwest Yukon, Canada, using passive open-top chambers (OTCs) distributed equally between opposing north and south-facing slopes.
Abstract: From 2001 to 2004 we experimentally warmed 40 large, naturally established, white spruce [Picea glauca (Moench) Voss] seedlings at alpine treeline in southwest Yukon, Canada, using passive open-top chambers (OTCs) distributed equally between opposing north and south-facing slopes. Our goal was to test the hypothesis that an increase in temperature consistent with global climate warming would elicit a positive growth response. OTCs increased growing season air temperatures by 1.8°C and annual growing degree-days by one-third. In response, warmed seedlings grew significantly taller and had higher photosynthetic rates compared with control seedlings. On the south aspect, soil temperatures averaged 1.0°C warmer and the snow-free period was nearly 1 month longer. These seedlings grew longer branches and wider annual rings than seedlings on the north aspect, but had reduced Photosystem-II efficiency and experienced higher winter needle mortality. The presence of OTCs tended to reduce winter dieback over the course of the experiment. These results indicate that climate warming will enhance vertical growth rates of young conifers, with implications for future changes to the structure and elevation of treeline contingent upon exposure-related differences. Our results suggest that the growth of seedlings on north-facing slopes is limited by low soil temperature in the presence of permafrost, while growth on south-facing slopes appears limited by winter desiccation and cold-induced photoinhibition.

Journal ArticleDOI
TL;DR: Results show that incorporation of mercury into decaying leaf litter increases its residence time in the landscape and may further delay the recovery of surface waters, fish, and associated biota following control of mercury emissions to the atmosphere.
Abstract: The fate of mercury in decomposing leaf litter and soil is key to understanding the biogeochemistry of mercury in forested ecosystems. We quantified mercury dynamics in decomposing leaf litter and measured fluxes and pools of mercury in litterfall, throughfall, and soil in two forest types of the Adirondack region, New York, USA. The mean content of total mercury in leaf litter increased to 134% of its original mass during two years of decomposition. The accumulation pattern was seasonal, with significant increases in mercury mass during the growing season (+4.9% per month). Litterfall dominated mercury fluxes into the soil in the deciduous forest, whereas throughfall dominated fluxes into the coniferous forest. The increase in mercury mass in decomposing deciduous litter during the growing season was greater than could be accounted for by throughfall inputs during the growing season (P < 0.05), suggesting translocation of mercury from the soil to the decomposing deciduous litter. This internal recycling mechanism concentrates mercury in the organic horizons and retards transport through the soil, thereby increasing the residence time of mercury in the forest floor. A mass balance assessment suggests that the ultimate fate of mercury in the landscape depends upon forest type and associated differences in the delivery and incorporation of mercury into the soil. Our results show that incorporation of mercury into decaying leaf litter increases its residence time in the landscape and may further delay the recovery of surface waters, fish, and associated biota following control of mercury emissions to the atmosphere.

Journal ArticleDOI
TL;DR: Generally, tree competition significantly reduced photosynthetic radiation (PAR), net assimilation (NA), and growth and yield of individual soybean or corn plants growing nearer to tree rows in both years and soil moisture was significantly correlated with soybeans yield in 1998.

Journal ArticleDOI
TL;DR: In this paper, the ecosystems of alpine snowbed habitats are reviewed with emphasis on ecosystem functioning and capability to adapt to current and predicted global change, and several ecosystem services which snowbeds provide to the alpine landscape are identified.
Abstract: The ecosystems of alpine snowbed habitats are reviewed with emphasis on ecosystem functioning and capability to adapt to current and predicted global change. Snowbeds form in topographic depressions that accumulate large amounts of snow during the winter months, and the final snowmelt does not occur until late in the growing season. Many species preferentially grow in snowbed habitats and some of these are even restricted to these habitats. In this review we identify several ecosystem services which snowbeds provide to the alpine landscape. For instance, snowbeds provide a steady water and nutrient supply to adjacent plant communities and offer newly emerged high-quality food for herbivores late in the growing season. We also propose that alpine snowbeds are much more productive than earlier thought, especially when the very short growing season and often high grazing pressure are taken fully into account. Furthermore, we propose that bryophytes and graminoids (grasses, sedges, and rushes) probab...

Journal ArticleDOI
TL;DR: The results suggest that variation in precipitation history and landscape positions are greater determinants of water-use patterns than would be expected based on absolute rooting depth.
Abstract: Water availability strongly governs grassland primary productivity, yet this resource varies dramatically in time (seasonally) and space (with soil depth and topography). It has long been assumed that co-occurring species differ in their partitioning of water use by depth, but direct evidence is lacking. We report data from two growing seasons (2004-2005) in which we measured the isotopic signature of plant xylem water from seven species (including C(3) forbs and shrubs and C(4) grasses) growing along a topographic gradient at the Konza Prairie Biological Station. Plant xylem stable oxygen isotope ratio (delta(18)O) values were compared to soil water delta(18)O profiles, recent rainfall events, and groundwater. Species varied in both their temporal patterns of water use and their responses to seasonal droughts in both years. During wet periods, species differences in water use were minimal, with common dependency on recent rainfall events stored in the upper soil layers. However, during dry periods, most C(3) species used proportionally more water from deeper portions of the soil profile relative to the C(4) grasses. Plants in uplands used more shallow soil water compared to those in lowlands, with the greatest differences across the topographic gradient occurring during dry periods. While the documented vertical root distribution varies by species and growth form in this grassland, each of the species we measured appeared to compete for the same surface layer soil moisture when water was not limiting. Thus, our results suggest that variation in precipitation history and landscape positions are greater determinants of water-use patterns than would be expected based on absolute rooting depth.

Journal ArticleDOI
01 Jun 2007-Oikos
TL;DR: In this article, the isotopic signature of xylem water, volumetric soil water content at 4 depths, and leaf water potentials were measured for seven species representing C4 grasses, C3 forbs and C3 shrubs over three growing seasons at the Konza Prairie (Kansas, USA).
Abstract: The majority of tallgrass prairie root biomass is located in the upper soil layers (0 � 25 cm), but species differences exist in reliance on soil water at varying depths. These differences have led to the hypothesis that resource partitioning belowground facilitates species co-existence in this mesic grassland. To determine if plant water relations can be linked to soil water partitioning as a potential mechanism allowing C3 species to persist among the more dominant C4 grasses, we measured differences in the source of water-use using the isotopic signature of xylem water, volumetric soil water content at 4 depths, and leaf water potentials. Data were collected for seven species representing C4 grasses, C3 forbs and C3 shrubs over three growing seasons at the Konza Prairie (Kansas, USA) to encompass a range of natural climatic conditions. C4 grasses relied on shallow soil water (5 cm) across the growing season and had midday leaf water potentials that were highly correlated with shallow soil water regardless of soil water availability at other portions of the soil profile (20, 40 and 90 cm). In contrast, C3 species only used shallow soil water when plentiful at this depth; these species increased their dependence on soil water from greater depths as the upper soil layers dried. Structural equation models describing plant water relations were very similar for the three C4 species, whereas a unique set of models and drivers were identified for each of the C3 species. These results support soil water partitioning as a mechanism for species coexistence, as C4 species in this grassland have relatively consistent dependence on water in shallow soil layers, whereas C3 species show niche differentiation in water use strategies to avoid competition with C4 grasses for water in shallow soil layers when this resource is limiting and leaf water stress is high.

Journal ArticleDOI
Weixin Ding1, Lei Meng1, Yunfeng Yin1, Zucong Cai1, Xunhua Zheng1 
TL;DR: In this article, a long-term field experiment was conducted to examine the influence of mineral fertilizer and organic manure on the equilibrium dynamics of soil organic C in an intensively cultivated fluvo-aquic soil in the Fengqiu State Key Agro-Ecological Experimental Station (Fengqiu county, Henan province, China) since September 1989.
Abstract: A long-term field experiment was conducted to examine the influence of mineral fertilizer and organic manure on the equilibrium dynamics of soil organic C in an intensively cultivated fluvo-aquic soil in the Fengqiu State Key Agro-Ecological Experimental Station (Fengqiu county, Henan province, China) since September 1989. Soil CO2 flux was measured during the maize and wheat growing seasons in 2002–2003 and 2004 to evaluate the response of soil respiration to additions and/or alterations in mineral fertilizer, organic manure and various environmental factors. The study included seven treatments: organic manure (OM), half-organic manure plus half-fertilizer N (NOM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (PK) and control (CK). Organic C in soil and the soil heavy fraction (organo-mineral complex) was increased from 4.47 to 8.61 mg C g−1 and from 3.32 to 5.68 mg C g−1, respectively, after the 13 yr application of organic manure. In contrast, organic C and the soil heavy fraction increased in NPK soil to only 5.41 and 4.38 mg C g−1, respectively. In the CK treatment, these parameters actually decreased from the initial C concentrations (4.47 and 3.32 mg C g−1) to 3.77 and 3.11 mg C g−1, respectively. Therefore, organic manure efficiently elevated soil organic C. However, only 66% of the increased soil organic C was combined with clay minerals in the OM treatment. Cumulative soil CO2 emissions from inter-row soil in the OM and NPK treatments were 228 and 188 g C m−2 during the 2002 maize growing season, 132 and 123 g C m−2 during the 2002/2003 wheat growing season, and 401 and 346 g C m−2 yr−1 in 2002–2003, respectively. However, during the 2004 maize growing season, cumulative soil CO2 emissions were as high as 617 and 556 g C m−2, respectively, due to the contribution of rhizosphere respiration. The addition of organic manure contributed to a 16% increase in soil CO2 emission in 2002–2003 (compared to NPK), where only 27%, 36% and 24% of applied organic C was released as CO2 during the 2002 and 2004 maize growing seasons and in 2002–2003, respectively. During the 2002/2003 wheat growing season, soil CO2 flux was significantly affected by soil temperature below 20 °C, but by soil moisture (WFPS) during the 2004 maize growing season at soil temperatures above 18 °C. Optimum soil WFPS for soil CO2 flux was approximately 70%. When WFPS was below 50%, it no longer had a significant impact on soil CO2 flux during the 2002 maize growing season. This study indicates the application of organic manure composted with wheat straw may be a preferred strategy for increasing soil organic C and sequestering C in soil.

Journal ArticleDOI
TL;DR: A dual isotope ((13)C and (14)C) pulse-label was used to determine the allocation of new C to different respiratory pathways in the early and late growing seasons for two plant functional types, perennial grasses and shrubs, in the Owens Valley, CA, USA.
Abstract: Quantification of the fate of carbon (C) used by plant metabolism is necessary to improve predictions of terrestrial ecosystem respiration and its sources. Here, a dual isotope ((13)C and (14)C) pulse-label was used to determine the allocation of new C to different respiratory pathways in the early and late growing seasons for two plant functional types, perennial grasses and shrubs, in the Owens Valley, CA, USA. Allocation differences between plant types exceeded seasonal allocation variation. Grasses respired 71 and 64% and shrubs respired 22 and 17% of the label below-ground in the early and late growing seasons, respectively. Across seasons and plant types, approximately 48-61% of the label recovered was respired in 24 h, approximately 68-84% in 6 d, and approximately 16-33% in 6-36 d after labeling. Three C pools were identified for plant metabolism: a fast pool with mean residence times (MRTs) of approximately 0.5 and approximately 1 d below- and above-ground, respectively; an intermediate pool with MRTs of 19.9 and 18.9 d; and a storage pool detected in new leaf early growing season respiration > 9 months after assimilation. Differences in allocation to fast vs intermediate C pools resulted in the mean age of C respired by shrubs being shorter (3.8-4.5 d) than that of the grasses (4.8-8.2 d).

Journal ArticleDOI
TL;DR: In this paper, the authors measured Eddy covariance fluxes in seven agricultural fields in the U.S. Southern Great Plains (SGP) during the 2001-03 growing seasons.
Abstract: Climate, vegetation cover, and management create finescale heterogeneity in unirrigated agricultural regions, with important but not well-quantified consequences for spatial and temporal variations in surface CO2, water, and heat fluxes. Eddy covariance fluxes were measured in seven agricultural fields—comprising winter wheat, pasture, and sorghum—in the U.S. Southern Great Plains (SGP) during the 2001–03 growing seasons. Land cover was the dominant source of variation in surface fluxes, with 50%–100% differences between fields planted in winter–spring versus fields planted in summer. Interannual variation was driven mainly by precipitation, which varied more than twofold between years. Peak aboveground biomass and growing season net ecosystem exchange (NEE) of CO2 increased in rough proportion to precipitation. Based on a partitioning of gross fluxes with a regression model, ecosystem respiration increased linearly with gross primary production, but with an offset that increased near the time of...

Journal ArticleDOI
TL;DR: This integrated study investigated the response, acclimation and adaptation of two desert shrubs, with different water-use strategies, to variations in water conditions, and predicted that H. ammodendron is predicted to succeed in interspecific competition in a future, moister habitat.
Abstract: As part of global climate change, variation in precipitation in arid ecosystems is leading to plant adaptation in water-use strategies; significant interspecific differences in response will change the plant composition of desert communities. This integrated study on the ecophysiological and individual morphological scale investigated the response, acclimation and adaptation of two desert shrubs, with different water-use strategies, to variations in water conditions. The experiments were carried out on two native dominant desert shrubs, Tamarix ramosissima and Haloxylon ammodendron, under three precipitation treatments (natural, double and no precipitation, respectively), in their original habitats on the southern periphery of Gurbantonggut Desert, Central Asia, during the growing season in 2005. Changes in photosynthesis, transpiration, leaf water potential, water-use efficiency, above-ground biomass accumulation and root distribution of the two species were examined and compared under the contrasting precipitation treatments. There were significant interspecific differences in water-use strategy and maintenance of photosynthesis under variation in precipitation. For the phreatophyte T. ramosissima, physiological activity and biomass accumulation rely on the stable groundwater, which shields it from fluctuation in the water status of the upper soil layers caused by precipitation. For the non-phreatophyte H. ammodendron, efficient morphological adjustment, combined with strong stomatal control, contributes to its acclimation to variation in precipitation. On account of its positive responses to increased precipitation, H. ammodendron is predicted to succeed in interspecific competition in a future, moister habitat.

Journal ArticleDOI
Weixin Ding1, Yan Cai1, Zucong Cai1, Kazuyuki Yagi, Xunhua Zheng1 
TL;DR: N2O emissions from a maize-wheat rotation field were monitored in the Fengqiu State Key Agro-Ecological Experimental Station and it is suggested that reducing the application rate of basal fertilizer N during the maize growing season could decrease N2O emission.

Journal ArticleDOI
TL;DR: Panax quinquefolius is clearly sensitive to a 5°C increase in temperature, and therefore other understory species may be negatively impacted by future increases in global temperature.
Abstract: The response of understory species to elevated temperatures is not well understood but is important because these plants are highly sensitive to their growth conditions. Three-year-old plants of Panax quinquefolius, an understory herb endemic to the eastern deciduous forests of North America, were grown in a greenhouse at 25/20°C (day/night) or 30/25°C for one growing season and analyzed each month. Plants grown at high temperatures had an early onset of leaf senescence and therefore accumulated less carbon. From May to July, P. quinquefolius grown at high temperatures had decreased photosynthesis (52%), stomatal conductance (60%), and root and total biomass (33% and 28%, respectively) compared to plants grown at low temperatures. As P. quinquefolius prepared to overwinter, plants grown at high temperatures had less root biomass (53%) than plants in low temperatures. The amount of storage-root ginsenosides was unaffected by temperature, and differences in storage root size may explain why plants grown at high temperatures had greater concentrations of storage root ginsenosides (49%) than plants grown at low temperatures. Panax quinquefolius is clearly sensitive to a 5°C increase in temperature, and therefore other understory species may be negatively impacted by future increases in global temperature.

Journal ArticleDOI
TL;DR: In this paper, the temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999.
Abstract: The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the correlation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coefficient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.

Journal ArticleDOI
TL;DR: Assessment of flowering phenology on the reproductive success of Silene ciliata, a Mediterranean high-mountain plant, across an altitudinal gradient during two climatically contrasting years indicates that water deficit in dry years could threaten the lowland populations of this mountainous species, while high-altitude environments are more stable over time.
Abstract: Summary • Mountain plants are particularly sensitive to climate warming because snowmelt timing exerts a direct control on their reproduction. Current warming is leading to earlier snowmelt dates and longer snow-free periods. Our hypothesis is that high-mountain Mediterranean plants are not able to take advantage of a lengthened snow-free period because this leads to longer drought that truncates the growing season. However, reproductive timing may somewhat mitigate these negative effects through temporal shifts. • We assessed the effects of flowering phenology on the reproductive success of Silene ciliata, a Mediterranean high-mountain plant, across an altitudinal gradient during two climatically contrasting years. • The species showed a late-flowering pattern hampering the use of snowmelt water. Plant fitness was largely explained by the elapsed time from snowmelt to onset of flowering, suggesting a selective pressure towards early flowering caused by soil moisture depletion. The proportion of flowering plants decreased at the lowest population, especially in the drier year. Plants produced more flowers, fruits and seeds at the highest population and in the mild year. • Our results indicate that water deficit in dry years could threaten the lowland populations of this mountainous species, while high-altitude environments are more stable over time.

Journal ArticleDOI
01 Feb 2007-Ecology
TL;DR: The results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent, which could be related to differences in interactions between plant species and soil biota.
Abstract: Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and (abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume (Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.

Journal ArticleDOI
TL;DR: In this paper, a regulated deficit irrigation experiment was conducted at one of the experimental sites of Sekota Agricultural Research Center, Woleh (Ethiopia), where the average onion yield was 19.34 mg/ha.

Journal ArticleDOI
TL;DR: In this paper, a greenhouse experiment with tomato, the N fertilizer reduction potential, tomato yield, N use and environmental implications were examined, in a comparison of site-specific N management with conventional N fertilization during three successive growing seasons from Feb. 2004 to Jun. 2005 in Shouguang, a typical greenhouse vegetable production region in Shandong province, Northern China.
Abstract: In a greenhouse experiment with tomato, the N fertilizer reduction potential, tomato yield, N use and environmental implications were examined, in a comparison of site-specific N management with conventional N fertilization during three successive growing seasons from Feb. 2004 to Jun. 2005 in Shouguang, a typical greenhouse vegetable production region in Shandong province, Northern China. Fertilizer N recommendation with site-specific management was based on the difference between N target value and soil initial nitrate-N content (0–0.3 m) with pre-sidedress soil nitrate testing (PSNT) and nitrate-N applied from irrigated water. The same basal dressing of 8, 11 and 8 t ha−1 of chicken manure (supplying 260, 360 and 316 kg N ha−1 in the first, second, and the third growing season, respectively) was broadcasted with conventional N, site-specific N and N from manure three treatments. The N target value with site-specific management was 300 kg N ha−1 in the first season, and then modified to 200 kg N ha−1 in the second and third seasons. In comparison with the fertilizer N applied rate with conventional N management (870, 720 and 630 kg N ha−1 in the three seasons, respectively), site-specific management reduced N fertilizer by 62, 78 and 80% without significant influences on tomato yield. The fruit yield of tomato with only basal dressing manure treatment was significantly decreased in the second season, compared with conventional N management. The nitrate content in 0–0.9 m soil depth with site-specific management was much lower than that with conventional N management in all three seasons. The 53–83% of emitted nitrous oxide (N2O) was measured from transplanting to the first sidedressing in the three seasons, strongly related to drying–wetting soil process. As a result, the cumulative emission with site-specific management was only reduced by 38% than that with conventional N management throughout three seasons. Considering N release from mineralization and irrigation water, site-specific N management could efficiently control N application in intensive irrigated-vegetable production region. Thus, it is valuable to obtaining vegetable crops with high yield and economic return while alleviating the risk of environmental pollution. But it is necessary to optimize irrigation regime to minimize N loss through nitrate leaching and N2O emission.

Journal ArticleDOI
TL;DR: Although brown bear populations in North America vary greatly in body mass, a new analytical approach incorporating modeled age-standardized body masses in linear models found no significant difference between the two European populations.
Abstract: We tested six hypotheses to explain expected geographical differences in body masses of 1,771 brown bears (Ursus arctos) from northern and southern Europe (Sweden and Norway compared with Slovenia and Croatia): Bergmann's rule, the fasting endurance hypothesis, and the dietary meat hypothesis, which predicted larger bears in the north; and hypotheses stressing the role of high primary productivity, high population density, low seasonality, and length of the growing season, which predicted larger bears in the south. Although brown bear populations in North America vary greatly in body mass, we found no significant difference in body mass between the two European popu- lations using a new analytical approach incorporating modeled age-standardized body masses in linear models, when correcting for sex and season. The greater variation in North America may be due primarily to the presence of large bears that feed on salmon (Oncorhynchus spp.), which does not occur in Europe. Asymptotic body masses were 115 ± 9 (SE) kg in spring and 141 ± 9 kg in autumn for southern females, 248 ± 25 and 243 ± 24 kg for southern males, 96 ± 2 and 158 ± 4 kg for northern females, and 201 ± 4 and 273 ± 6 kg for northern males, respectively. Northern bears gained more body mass before hibernation and lost more during hibernation than southern bears, probably be- cause hibernation was twice as long in the north. Northern bears gained and southern bears lost mass during the spring, perhaps due to the greater availability and use of protein-rich food in spring in the north. As reproductive success in bears is correlated with adult female body mass in interpopulation comparisons, brown bears may have relatively similar reproductive rates throughout Europe, although minimum age at primiparity and litter interval are lower in the south.

Journal ArticleDOI
TL;DR: In this paper, the authors assess potential future impacts of climate change on wheat yields in Swat and Chitral districts of Pakistan, mountainous areas with average altitudes of 960 and 1500 meters above sea level, respectively.