scispace - formally typeset
Search or ask a question
Topic

Growth factor receptor inhibitor

About: Growth factor receptor inhibitor is a research topic. Over the lifetime, 4730 publications have been published within this topic receiving 297500 citations.


Papers
More filters
Journal Article
TL;DR: Findings suggest that coexpression of EGFR and its ligands may contribute to the aggressiveness of human pancreatic cancer.
Abstract: Immunohistochemical analysis for the epidermal growth factor receptor (EGFR), EGF and transforming growth factor-alpha (TGF-alpha) was performed in 87 human pancreatic carcinomas. Expression frequencies for EGFR, EGF, and TGF-alpha were 43%, 46% and 54%, respectively. Coexpression of the receptor and at least one of its ligands occurred in 38% of the tumors, and correlated with large tumor size, advanced clinical staging, and decreased survival period. In situ hybridization revealed that the respective mRNAs were also overexpressed in the carcinomas. These findings suggest that coexpression of EGFR and its ligands may contribute to the aggressiveness of human pancreatic cancer.

421 citations

Journal ArticleDOI
TL;DR: In this paper, a review describes key molecular mechanisms and novel therapies that are on the horizon for antiangiogenic tumor therapy, including growth factors, receptor tyrosine kinases, and transcription factors such as hypoxia inducible factor.
Abstract: Angiogenesis has become an attractive target for drug therapy because of its key role in tumor growth. An extensive array of compounds is currently in preclinical development, with many now entering the clinic and/or achieving approval from the US Food and Drug Administration. Several regulatory and signaling molecules governing angiogenesis are of interest, including growth factors (eg, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, and epidermal growth factor), receptor tyrosine kinases, and transcription factors such as hypoxia inducible factor, as well as molecules involved in mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling. Pharmacologic agents have been identified that target these pathways, yet for some agents (notably thalidomide), an understanding of the specific mechanisms of antitumor action has proved elusive. The following review describes key molecular mechanisms and novel therapies that are on the horizon for antiangiogenic tumor therapy.

421 citations

Journal ArticleDOI
TL;DR: A review of the structural and functional properties of the epidermal growth factor receptor and selected examples to illustrate their roles in development, physiology, and pathology are presented.
Abstract: The epidermal growth factor receptor (EGFR) regulates key processes of cell biology, including proliferation, survival, and differentiation during development, tissue homeostasis, and tumorigenesis. Canonical EGFR activation involves the binding of seven peptide growth factors. These ligands are synthesized as transmembrane proteins comprising an N-terminal extension, the EGF module, a short juxtamembrane stalk, a hydrophobic transmembrane domain, and a carboxy-terminal fragment. The central structural and functional feature is the EGF module, a sequence containing six cysteines in a conserved spacement which is responsible for binding to the EGFR. While the membrane-anchored peptide can be biologically active by juxtacrine signaling, in most cases the EGF module is proteolytically cleaved (a process termed ectodomain shedding) to release the soluble growth factor, which may act in an endocrine, paracrine, or autocrine fashion. This review summarizes the structural and functional properties of these fascinating molecules and presents selected examples to illustrate their roles in development, physiology, and pathology.

419 citations

Journal ArticleDOI
23 Feb 1990-Science
TL;DR: Findings imply that activation of the protein tyrosine kinase activity at the cell membrane is sufficient for the growth-enhancing effects of EGF, suggesting that downregulation can serve as an attenuation mechanism, without which transformation ensues.
Abstract: Identification of a mutant epidermal growth factor (EGF) receptor that does not undergo downregulation has provided a genetic probe to investigate the role of internalization in ligand-induced mitogenesis. Contact-inhibited cells expressing this internalization-defective receptor exhibited a normal mitogenic response at significantly lower ligand concentrations than did cells expressing wild-type receptors. A transformed phenotype and anchorage-independent growth were observed at ligand concentrations that failed to elicit these responses in cells expressing wild-type receptors. These findings imply that activation of the protein tyrosine kinase activity at the cell membrane is sufficient for the growth-enhancing effects of EGF. Thus, downregulation can serve as an attenuation mechanism, without which transformation ensues.

418 citations

Journal ArticleDOI
TL;DR: This review summarizes some new aspects of peptide and steroid hormone signaling in the rodent ovary that appear to regulate cumulus expansion and other aspects relating to ovarian embryogenesis and possibly ovulation and luteinization.
Abstract: The interactions of peptide and steroid hormone signaling cascades in the ovary are critical for follicular growth, ovulation, and luteinization. Although the pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) play key regulatory roles, their actions are also dependent on other peptide signaling pathways, including those stimulated by insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-beta) family members (e.g., inhibin, activin, growth differentiation factor-9, bone morphogenic proteins), fibroblast growth factor, and Wnts (via Frizzled receptors). Each of these factors is expressed and acts in a cell-specific manner at defined stages of follicular growth. IGF-1, estrogen, and FSH comprise one major regulatory system. The Wnt/Frizzled pathways define other aspects relating to ovarian embryogenesis and possibly ovulation and luteinization. Likewise, the steroid receptors as well as orphan nuclear receptors and their ligands impact ovarian cell function. The importance of these multiple signaling cascades has been documented by targeted deletion of specific genes. For example, mice null for the LH-induced genes progesterone receptor (PR) and cyclo-oxygenase-2 (COX-2) fail to ovulate. Whereas PR appears to regulate the induction of novel proteases, COX-2 appears to regulate cumulus expansion. This review summarizes some new aspects of peptide and steroid hormone signaling in the rodent ovary.

417 citations


Network Information
Related Topics (5)
Cancer
339.6K papers, 10.9M citations
88% related
Signal transduction
122.6K papers, 8.2M citations
86% related
Apoptosis
115.4K papers, 4.8M citations
86% related
Cell culture
133.3K papers, 5.3M citations
85% related
Breast cancer
214.3K papers, 6.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202352
20225
20211
20201
20191
201811