scispace - formally typeset
Search or ask a question
Topic

Growth medium

About: Growth medium is a research topic. Over the lifetime, 1889 publications have been published within this topic receiving 59171 citations. The topic is also known as: culture medium & culture media.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that when grown to stationary phase in media containing high concentrations of certain sugars, C. albicans undergoes a change in cell surface composition which facilitates its adherence to acrylic surfaces.
Abstract: The adherence of Candida albicans to acrylic was measured in vitro after growth of the yeast to stationary phase in defined medium containing glucose, sucrose, galactose, fructose, or maltose as the carbon source. In each case, yeast adherence was proportional to the concentration of sugar in the growth medium, but equimolar concentrations of different sugars promoted adherence to different extents. In vitro adherence was further increased by the addition of divalent cations to assay mixtures but was inhibited when saliva-treated acrylic strips were used or when yeasts were suspended in mixed saliva during the assay. The rate of spheroplast formation of yeasts grown in media containing a 500 mM concentration of the different sugars correlated well with the relative adherence of the cells to acrylic. Galactose-grown yeasts were most resistant to spheroplast formation with Zymolyase-5000 and most adherent to acrylic, whereas fructose-grown organisms were least resistant to spheroplast formation and least adherent to acrylic. These results indicate that when grown to stationary phase in media containing high concentrations of certain sugars, C. albicans undergoes a change in cell surface composition which facilitates its adherence to acrylic surfaces. Electron microscopy of yeasts harvested from such media revealed the presence of an additional surface layer which may be responsible for this enhanced adherence.

242 citations

Journal ArticleDOI
TL;DR: Investigation of the basis for acetate-induced acid tolerance in E. coli O157:H7 found induction of RpoS expression did not appear to be sufficient to activate the acid tolerance response, and treatment with acetate increased acid survival.
Abstract: The ability of Escherichia coli to survive at low pH is strongly affected by environmental factors, such as composition of the growth medium and growth phase. Exposure to short-chain fatty acids, such as acetate, proprionate, and butyrate, at neutral or nearly neutral pH has also been shown to increase acid survival of E. coli and Salmonella enterica serovar Typhimurium. To investigate the basis for acetate-induced acid tolerance in E. coli O157:H7, genes whose expression was altered by exposure to acetate were identified using gene arrays. The expression of 60 genes was reduced by at least twofold; of these, 48 encode components of the transcription-translation machinery. Expression of 26 genes increased twofold or greater following treatment with acetate. This included six genes whose products are known to be important for survival at low pH. Five of these genes, as well as six other acetate-induced genes, are members of the E. coli RpoS regulon. RpoS, the stress sigma factor, is known to be required for acid tolerance induced by growth at nonlethal low pH or by entry into stationary phase. Disruption of the rpoS gene by a transposon insertion mutation also prevented acetate-induced acid tolerance. However, induction of RpoS expression did not appear to be sufficient to activate the acid tolerance response. Treatment with either NaCl or sodium acetate (pH 7.0) increased expression of an rpoS::lacZ fusion protein, but only treatment with acetate increased acid survival.

233 citations

Journal ArticleDOI
TL;DR: The concept of balancing the elemental composition of growth medium with biomass composition to obtain high-density cultures is introduced and the performance of high cell density photobioreactors can be significantly enhanced by proper medium design.
Abstract: The basic requirements for high-density photoautotrophic microalgal cultures in enclosed photobioreactors are a powerful light source and proper distribution of light, efficient gas exchange, and suitable medium composition. This article introduces the concept of balancing the elemental composition of growth medium with biomass composition to obtain high-density cultures. N-8 medium, commonly used for culturing Chlorella vulgaris was evaluated for its capacity to support high-density cultures on the basis of elemental stoichiometric composition of C. vulgaris. This analysis showed that the N-8 medium is deficient in iron, magnesium, sulfur, and nitrogen at high cell densities. N-8 medium was redesigned to contain stoichiometrically balanced quantities of the four deficient elements to support a biomass concentration of 2% (v/v). The redesigned medium, called M-8 medium, resulted in up to three- to fivefold increase in total chlorophyll content per volume of culture as compared to N-8 medium. Further experiments showed that addition of each of the four elements separately to N-8 medium did not improve culture performance and that balanced supplementation of all four deficient elements was required to yield the improved performance. Long-term (24 d) C. vulgaris culture in M-8 medium showed continuous increase in chlorophyll content and biomass throughout the period of cultivation. In contrast, the increase in chlorophyll content and biomass ceased after 7 and 12 d, respectively in N-8 medium, demonstrating the higher capacity of M-8 medium to produce biomass. Thus, the performance of high cell density photobioreactors can be significantly enhanced by proper medium design. The elemental composition of the biomass generated is an appropriate basis for medium design.

232 citations

Journal ArticleDOI
TL;DR: The plate assay was validated by studying immunoglobulin production following recovery of clones from dishes and their growth to mass suspension culture and the antiserum had no adverse effect on cloning efficiency or colony size.
Abstract: Cultured mouse myeloma cells have been cloned in soft agar using a modification of the method established by Pluznik and Sachs ('65, '66) and by Bradley and Metcalf ('66). A linear relationship existed between the number of cells plated and the number of colonies produced. Conditions for obtaining optimum cloning efficiency and colony size were determined for the MPC-11 cell line. Feeder cells of mouse, human and rabbit origin and conditioned growth medium obtained from mouse cultures and had an enhancing effect on colony formation. Immunoglobulin production by cloned cells was detected by overlaying the clones with anti-immunoglobulin antiserum. The antiserum had no adverse effect on cloning efficiency or colony size. A reconstruction experiment was performed to show that the plate assay could reliably detect rare variants of immunoglobulin producing cells. The plate assay was validated by studying immunoglobulin production following recovery of clones from dishes and their growth to mass suspension culture. Immunoglobulin formation in these cultures was assessed by a Ouchterlony immunodiffusion of the supernatant medium, and by incubating the cells with radioactive amino acids and analyzing the intracellular and secreted immunoglobulin on polyacrylamide gels.

229 citations

Journal ArticleDOI
TL;DR: The increase of potassium concentration in the growth medium was found to improve the expression of maximal tolerance to acetic acid, consistent with the idea that the adequate manipulation of nutrient concentration of industrial growth medium can be an interesting strategy to surpass the deleterious effects of this weak acid in yeast cells.
Abstract: Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are novel candidate genes for genetic engineering to obtain more robust yeast strains against acetic acid toxicity. Among these genes there are number of transcription factors that are documented regulators of a large percentage of the genes found to exert protection against acetic acid thus being considered interesting targets for subsequent genetic engineering. The increase of potassium concentration in the growth medium was found to improve the expression of maximal tolerance to acetic acid, consistent with the idea that the adequate manipulation of nutrient concentration of industrial growth medium can be an interesting strategy to surpass the deleterious effects of this weak acid in yeast cells.

224 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
88% related
Plasmid
44.3K papers, 1.9M citations
86% related
Yeast
31.7K papers, 868.9K citations
85% related
Gel electrophoresis
26K papers, 1.1M citations
85% related
Mutant
74.5K papers, 3.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
20226
202126
202032
201926
201829