scispace - formally typeset
Search or ask a question
Topic

GTP-Binding Protein alpha Subunits

About: GTP-Binding Protein alpha Subunits is a research topic. Over the lifetime, 304 publications have been published within this topic receiving 19915 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that PA stimulation of PLC-beta activity is tightly regulated, suggesting the existence of a distinct PA binding region in PL-beta(1), and PA may be an important component of a receptor mediated signaling mechanism that determines P LC- beta(1) activation.
Abstract: Phosphatidic acid (PA) stimulates phospholipase C-beta(1) (PLC-beta(1)) activity and promotes G protein stimulation of PLC-beta(1) activity. The isoform dependence for PA regulation of PLC-beta activity as well as the role of PA in modulating regulation of PLC-beta activity by protein kinase C (PKC) and G protein subunits was determined. As compared to PLC-beta(1), the phospholipase C-beta(3) (PLC-beta(3)) isoform was less sensitive to PA, requiring greater than 15 mol % PA for stimulation. PLC-beta(3) bound weakly to PA. PKC had little effect on PA stimulation of PLC-beta(3) activity. PKC, however, inhibited PA stimulation of PLC-beta(1) activity through a mechanism dependent on the mol % PA. Stimulation by 7.5 mol % PA was completely inhibited by PKC. Increasing the PA and Ca(2+) concentration attenuated PKC inhibition. The binding of PLC-beta(1) to PA containing phospholipid vesicles was also reduced by PKC, in a manner dependent on the mol % PA. PA increased the stimulation of PLC-beta(1) activity by G alpha q but had little effect on the stimulation by beta gamma subunits. These results demonstrate that PA stimulation of PLC-beta activity is tightly regulated, suggesting the existence of a distinct PA binding region in PLC-beta(1). PA may be an important component of a receptor mediated signaling mechanism that determines PLC-beta(1) activation.

29 citations

Journal ArticleDOI
TL;DR: Biochemical studies suggest that G proteins mediate a variety of signaling processes in plants, yet Arabidopsis has only one gene, GPA1, for a canonical G protein alpha subunit.

29 citations

Journal ArticleDOI
TL;DR: The sequence of a new Gα subunit, CPG-3, that is most similar to three other filamentous fungal Gα proteins that form a phylogenetically distinct grouping is described.
Abstract: Heterotrimeric G-proteins mediate many responses of eukaryotic cells to external stimuli and have been shown to be important for fungal pathogenicity. In this study, we explored the accumulation of G-protein subunits of the chestnut blight fungus, Cryphonectria parasitica, in mutant strains deleted for one or more putative partner subunits. Using a series of extraction buffers and immunoblot end-point dilution analysis, we established a convenient method to assess the relative abundance of these membrane-associated proteins. Disruption of either cpg-1, which encodes the Galpha subunit CPG-1, or cpgb-1, the Gbeta subunit CPGB-1, consistently reduced the level of its presumptive partner protein. This was not observed in the case of a second Galpha subunit, CPG-2, suggesting that CPG-1 and CPGB-1 regulate each other's stability. Further, analysis of transcript levels indicated that the Galpha and Gbeta protein turnover rates were increased in the mutant strains. Additionally, a previously unidentified protein that was cross-reactive with anti-CPG-1 antiserum was found to be enhanced in liquid culture. We describe the sequence of a new Galpha subunit, CPG-3, that is most similar to three other filamentous fungal Galpha proteins that form a phylogenetically distinct grouping.

29 citations

Journal ArticleDOI
TL;DR: Examination of the relative roles of Gαi and Gβγ activation in the migration of neutrophils on surfaces coated with the integrin ligand intercellular adhesion molecule–1 (ICAM-1) and the small molecule 12155 provides evidence for a direct role of activated G αi in promoting cell polarization through a cAMP-dependent mechanism and in inhibiting adhesion through acAMP-independent mechanism.
Abstract: Activation of the Gi family of heterotrimeric guanine nucleotide-binding proteins (G proteins) releases βγ subunits, which are the major transducers of chemotactic G protein-coupled receptor (GPCR)-dependent cell migration. The small molecule 12155 binds directly to Gβγ and activates Gβγ signaling without activating the Gαi subunit in the Gi heterotrimer. We used 12155 to examine the relative roles of Gαi and Gβγ activation in the migration of neutrophils on surfaces coated with the integrin ligand intercellular adhesion molecule-1 (ICAM-1). We found that 12155 suppressed basal migration by inhibiting the polarization of neutrophils and increasing their adhesion to ICAM-1-coated surfaces. GPCR-independent activation of endogenous Gαi and Gβγ with the mastoparan analog Mas7 resulted in normal migration. Furthermore, 12155-treated cells expressing a constitutively active form of Gαi1 became polarized and migrated. The extent and duration of signaling by the second messenger cyclic adenosine monophosphate (cAMP) were enhanced by 12155. Inhibiting the activity of cAMP-dependent protein kinase (PKA) restored the polarity of 12155-treated cells but did not decrease their adhesion to ICAM-1 and failed to restore migration. Together, these data provide evidence for a direct role of activated Gαi in promoting cell polarization through a cAMP-dependent mechanism and in inhibiting adhesion through a cAMP-independent mechanism.

29 citations

Journal ArticleDOI
TL;DR: It is proposed that the conformation of this region of Gpa1p differs during the interactions with the a- and alpha-factor receptors and that these mating type-specific mutations preclude the orientation necessary for interaction with one of the two receptors.
Abstract: The Saccharomyces cerevisiae G protein alpha subunit Gpa1p is involved in the response of both MATa and MAT alpha cells to pheromone. We mutagenized the GPA1 C terminus to characterize the receptor-interacting domain and to investigate the specificity of the interactions with the a- and alpha-factor receptors. The results are discussed with respect to a structural model of the Gpa1p C terminus that was based on the crystal structure of bovine transducin. Some mutants showed phenotypes different than the pheromone response and mating defects expected for mutations that affect receptor interactions, and therefore the mutations may affect other aspects of Gpa1p function. Most of the mutations that resulted in pheromone response and mating defects had similar effects in MATa and MAT alpha cells, suggesting that they affect the interactions with both receptors. Overexpression of the pheromone receptors increased the mating of some of the mutants tested but not the wild-type strain, consistent with defects in mutant Gpa1p-receptor interactions. The regions identified by the mating-defective mutants correlated well with the regions of mammalian G(alpha) subunits implicated in receptor interactions. The strongest mating type-specific effects were seen for mutations to proline and a mutation of a glycine residue predicted to form a C-terminal beta turn. The analogous beta turn in mammalian G(alpha) subunits undergoes a conformational change upon receptor interaction. We propose that the conformation of this region of Gpa1p differs during the interactions with the a- and alpha-factor receptors and that these mating type-specific mutations preclude the orientation necessary for interaction with one of the two receptors.

28 citations

Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Kinase
65.8K papers, 3.5M citations
82% related
Phosphorylation
69.3K papers, 3.8M citations
82% related
Receptor
159.3K papers, 8.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20213
20205
20197
20187
20171
20168