scispace - formally typeset
Search or ask a question
Topic

Hadamard transform

About: Hadamard transform is a research topic. Over the lifetime, 7262 publications have been published within this topic receiving 94328 citations.


Papers
More filters
BookDOI
01 Jan 1991

311 citations

01 Jan 1992
TL;DR: Seberry and Yamada as discussed by the authors considered the problem of finding the maximal determinant of real matrices with entries on the unit disc, and showed that Hadamard matrices satisfy the equality of the following inequality.
Abstract: One hundred years ago, in 1893, Jacques Hadamard [31] found square matrices of orders 12 and 20, with entries ±1, which had all their rows (and columns) pairwise orthogonal. These matrices, X = (Xij), satisfied the equality of the following inequality, |detX|2 ≤ ∏ ∑ |xij|2, and so had maximal determinant among matrices with entries ±1. Hadamard actually asked the question of finding the maximal determinant of matrices with entries on the unit disc, but his name has become associated with the question concerning real matrices. Disciplines Physical Sciences and Mathematics Publication Details Jennifer Seberry and Mieko Yamada, Hadamard matrices, Sequences, and Block Designs, Contemporary Design Theory – A Collection of Surveys, (D. J. Stinson and J. Dinitz, Eds.)), John Wiley and Sons, (1992), 431-560. This journal article is available at Research Online: http://ro.uow.edu.au/infopapers/1070 11 "-. Hadamard Matrices, Sequences, and Block Designs Jennifer Seberry and Mieko Yamada 1 IN1RODUCTION 2 HADAMARD MATRICES 3 THE SmONGEST HADAMARD CONSmUCTION THEOREMS 4 ORTIIOGONAL DESIGNS AND AsYMPTOTIC EXISTENCE 5 SEQUENCES 6 AMICABLE HADAMARD MAmICES AND AOD 7 CoNSmUCTIONS FOR SKEW HADAMARD MAmICES 8 M -SmucTUREs 9 WILLIAMSON AND WILUAMSON-TYPE MAmICES 10 SBIBD AND THE EXCESS OF HADAMARD MATRICES 11 CoMPLEX HADAMARD MATRICES APPENDIX REFERENCES

308 citations

Journal ArticleDOI
TL;DR: In this article, a Caputo-type modification of Hadamard fractional derivatives is introduced, and the properties of the modified derivatives are studied, including their properties of memory effect.
Abstract: Generalization of fractional differential operators was subjected to an intense debate in the last few years in order to contribute to a deep understanding of the behavior of complex systems with memory effect. In this article, a Caputo-type modification of Hadamard fractional derivatives is introduced. The properties of the modified derivatives are studied.

292 citations

Journal ArticleDOI
TL;DR: Hadamard matrices have been widely studied in the literature and many of their applications can be found in this paper, e.g., incomplete block designs, Youden designs, orthogonal $F$-square designs, optimal saturated resolution III (SRSIII), optimal weighing designs, maximal sets of pairwise independent random variables with uniform measure, error correcting and detecting codes, Walsh functions, and other mathematical and statistical objects.
Abstract: An $n \times n$ matrix $H$ with all its entries $+1$ and $-1$ is Hadamard if $HH' = nI$. It is well known that $n$ must be 1, 2 or a multiple of 4 for such a matrix to exist, but is not known whether Hadamard matrices exist for every $n$ which is a multiple of 4. The smallest order for which a Hadamard matrix has not been constructed is (as of 1977) 268. Research in the area of Hadamard matrices and their applications has steadily and rapidly grown, especially during the last three decades. These matrices can be transformed to produce incomplete block designs, $t$-designs, Youden designs, orthogonal $F$-square designs, optimal saturated resolution III designs, optimal weighing designs, maximal sets of pairwise independent random variables with uniform measure, error correcting and detecting codes, Walsh functions, and other mathematical and statistical objects. In this paper we survey the existence of Hadamard matrices and many of their applications.

288 citations

Journal ArticleDOI
TL;DR: An algorithm for downsampling and also upsampling in the compressed domain which is computationally much faster, produces visually sharper images, and gives significant improvements in PSNR (typically 4-dB better compared to bilinear interpolation).
Abstract: Given a video frame in terms of its 8/spl times/8 block-DCT coefficients, we wish to obtain a downsized or upsized version of this frame also in terms of 8/spl times/8 block-DCT coefficients. The DCT being a linear unitary transform is distributive over matrix multiplication. This fact has been used for downsampling video frames in the DCT domain. However, this involves matrix multiplication with the DCT of the downsampling matrix. This multiplication can be costly enough to trade off any gains obtained by operating directly in the compressed domain. We propose an algorithm for downsampling and also upsampling in the compressed domain which is computationally much faster, produces visually sharper images, and gives significant improvements in PSNR (typically 4-dB better compared to bilinear interpolation). Specifically the downsampling method requires 1.25 multiplications and 1.25 additions per pixel of original image compared to 4.00 multiplications and 4.75 additions required by the method of Chang et al. (1995). Moreover, the downsampling and upsampling schemes combined together preserve all the low-frequency DCT coefficients of the original image. This implies tremendous savings for coding the difference between the original frame (unsampled image) and its prediction (the upsampled image). This is desirable for many applications based on scalable encoding of video. The method presented can also be used with transforms other than DCT, such as Hadamard or Fourier.

286 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
85% related
Matrix (mathematics)
105.5K papers, 1.9M citations
85% related
Differential equation
88K papers, 2M citations
85% related
Iterative method
48.8K papers, 1.2M citations
85% related
Upper and lower bounds
56.9K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023339
2022850
2021391
2020444
2019427
2018372