scispace - formally typeset
Search or ask a question
Topic

Hadamard transform

About: Hadamard transform is a research topic. Over the lifetime, 7262 publications have been published within this topic receiving 94328 citations.


Papers
More filters
Journal ArticleDOI
Hiroshi Kimura1
TL;DR: The classification of Hadamard matrices of order 24 is completed by this paper and Ito-Leon-Longyear [3] and this matrix must be appear in [11].
Abstract: In this paper we give a new Hadamard matrix of order 24 and its properties. This matrix must be appear in [11]. By this paper and Ito-Leon-Longyear [3] the classification of Hadamard matrices of order 24 is completed.

45 citations

Posted Content
TL;DR: A classical approach to the simulation of general quantum circuits based on neural-network quantum states (NQS) representations is introduced, and rules for exactly applying single-qubit and two-qu bit Z rotations to NQS are derived, whereas a learning scheme is provided to approximate the action of Hadamard gates.
Abstract: Simulating quantum algorithms with classical resources generally requires exponential resources. However, heuristic classical approaches are often very efficient in approximately simulating special circuit structures, for example with limited entanglement, or based on one-dimensional geometries. Here we introduce a classical approach to the simulation of general quantum circuits based on neural-network quantum states (NQS) representations. Considering a set of universal quantum gates, we derive rules for exactly applying single-qubit and two-qubit Z rotations to NQS, whereas we provide a learning scheme to approximate the action of Hadamard gates. Results are shown for the Hadamard and Fourier transform of entangled initial states for systems sizes and total circuit depths exceeding what can be currently simulated with state-of-the-art brute-force techniques. The overall accuracy obtained by the neural-network states based on Restricted Boltzmann machines is satisfactory, and offers a classical route to simulating highly-entangled circuits. In the test cases considered, we find that our classical simulations are comparable to quantum simulations affected by an incoherent noise level in the hardware of about $10^{-3}$ per gate.

45 citations

Journal ArticleDOI
TL;DR: The analysis shows that the encrypted WHT can accommodate plaintext data of larger values and has better energy compaction ability on dithered images and the speedup of the homomorphic encrypted image application exceeds 12.5x.
Abstract: Since homomorphic encryption operations have high computational complexity, image applications based on homomorphic encryption are often time consuming, which makes them impractical. In this paper, we study efficient encrypted image applications with the encrypted domain Walsh-Hadamard transform (WHT) and parallel algorithms. We first present methods to implement real and complex WHTs in the encrypted domain. We then propose a parallel algorithm to improve the computational efficiency of the encrypted domain WHT. To compare the WHT with the discrete cosine transform (DCT), integer DCT, and Haar transform in the encrypted domain, we conduct theoretical analysis and experimental verification, which reveal that the encrypted domain WHT has the advantages of lower computational complexity and a shorter running time. Our analysis shows that the encrypted WHT can accommodate plaintext data of larger values and has better energy compaction ability on dithered images. We propose two encrypted image applications using the encrypted domain WHT. To accelerate the practical execution, we present two parallelization strategies for the proposed applications. The experimental results show that the speedup of the homomorphic encrypted image application exceeds 12.

45 citations

Journal ArticleDOI
TL;DR: It is shown how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is significantly lower than the classical one, and designed a query problem that uses the Legendre symbol χ.
Abstract: . In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to devise new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is significantly lower than the classical one. It is pointed out that this scheme captures both Bernstein and Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the article we consider Paley's construction of Hadamard matrices, which relies on the properties of quadratic characters over finite fields. We design a query problem that uses the Legendre symbol χ (which indicates if an element of a finite field F q is a quadratic residue or not). It is shown how for a shifted Legendre function f s (i)=χ(i+s) , the unknown s ∈ F q can be obtained exactly with only two quantum calls to f s . This is in sharp contrast with the observation that any classical, probabilistic procedure requires more than log q + log ((1-ɛ )/2) queries to solve the same problem.

45 citations


Network Information
Related Topics (5)
Bounded function
77.2K papers, 1.3M citations
85% related
Matrix (mathematics)
105.5K papers, 1.9M citations
85% related
Differential equation
88K papers, 2M citations
85% related
Iterative method
48.8K papers, 1.2M citations
85% related
Upper and lower bounds
56.9K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023339
2022850
2021391
2020444
2019427
2018372