scispace - formally typeset
Search or ask a question
Topic

Haematopoiesis

About: Haematopoiesis is a research topic. Over the lifetime, 35227 publications have been published within this topic receiving 1673100 citations. The topic is also known as: Haematopoiesis & GO:0030097.


Papers
More filters
Journal ArticleDOI
04 Jul 2002-Nature
TL;DR: It is reported here that cells co-purifying with mesenchymal stem cells—termed here multipotent adult progenitor cells or MAPCs—differentiate, at the single cell level, not only into meschymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm characteristics in vitro.
Abstract: We report here that cells co-purifying with mesenchymal stem cells--termed here multipotent adult progenitor cells or MAPCs--differentiate, at the single cell level, not only into mesenchymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm characteristics in vitro. When injected into an early blastocyst, single MAPCs contribute to most, if not all, somatic cell types. On transplantation into a non-irradiated host, MAPCs engraft and differentiate to the haematopoietic lineage, in addition to the epithelium of liver, lung and gut. Engraftment in the haematopoietic system as well as the gastrointestinal tract is increased when MAPCs are transplanted in a minimally irradiated host. As MAPCs proliferate extensively without obvious senescence or loss of differentiation potential, they may be an ideal cell source for therapy of inherited or degenerative diseases.

5,475 citations

Journal ArticleDOI
06 Jul 1995-Nature
TL;DR: The generation of mice deficient in Flk-1 by disruption of the gene using homologous recombination in embryonic stem (ES) cells is reported, indicating that FlK-1 is essential for yolk-sac blood-island formation and vasculogenesis in the mouse embryo.
Abstract: The receptor tyrosine kinase Flk-1 (ref. 1) is believed to play a pivotal role in endothelial development. Expression of the Flk-1 receptor is restricted to endothelial cells and their embryonic precursors, and is complementary to that of its ligand, vascular endothelial growth factor (VEGF), which is an endothelial-specific mitogen. Highest levels of flk-1 expression are observed during embryonic vasculogenesis and angiogenesis, and during pathological processes associated with neovascularization, such as tumour angiogenesis. Because flk-1 expression can be detected in presumptive mesodermal yolk-sac blood-island progenitors as early as 7.0 days postcoitum, Flk-1 may mark the putative common embryonic endothelial and haematopoietic precursor, the haemangioblast, and thus may also be involved in early haematopoiesis. Here we report the generation of mice deficient in Flk-1 by disruption of the gene using homologous recombination in embryonic stem (ES) cells. Embryos homozygous for this mutation die in utero between 8.5 and 9.5 days post-coitum, as a result of an early defect in the development of haematopoietic and endothelial cells. Yolk-sac blood islands were absent at 7.5 days, organized blood vessels could not be observed in the embryo or yolk sac at any stage, and haematopoietic progenitors were severely reduced. These results indicate that Flk-1 is essential for yolk-sac blood-island formation and vasculogenesis in the mouse embryo.

4,063 citations

Journal Article
TL;DR: A role for the wild-type p53 protein in the inhibition of DNA synthesis that follows DNA damage is suggested and a new mechanism for how the loss of wild- type p53 might contribute to tumorigenesis is suggested.
Abstract: The inhibition of replicative DNA synthesis that follows DNA damage may be critical for avoiding genetic lesions that could contribute to cellular transformation. Exposure of ML-1 myeloblastic leukemia cells to nonlethal doses of the DNA damaging agents, gamma-irradiation or actinomycin D, causes a transient inhibition of replicative DNA synthesis via both G1 and G2 arrests. Levels of p53 protein in ML-1 cells and in proliferating normal bone marrow myeloid progenitor cells increase and decrease in temporal association with the G1 arrest. In contrast, the S-phase arrest of ML-1 cells caused by exposure to the anti-metabolite, cytosine arabinoside, which does not directly damage DNA, is not associated with a significant change in p53 protein levels. Caffeine treatment blocks both the G1 arrest and the induction of p53 protein after gamma-irradiation, thus suggesting that blocking the induction of p53 protein may contribute to the previously observed effects of caffeine on cell cycle changes after DNA damage. Unlike ML-1 cells and normal bone marrow myeloid progenitor cells, hematopoietic cells that either lack p53 gene expression or overexpress a mutant form of the p53 gene do not exhibit a G1 arrest after gamma-irradiation; however, the G2 arrest is unaffected by the status of the p53 gene. These results suggest a role for the wild-type p53 protein in the inhibition of DNA synthesis that follows DNA damage and thus suggest a new mechanism for how the loss of wild-type p53 might contribute to tumorigenesis.

3,878 citations

Journal ArticleDOI
09 Jun 2005-Nature
TL;DR: It is found that the levels of the primary or mature microRNAs derived from the mir-17–92 locus are often substantially increased in human B-cell lymphomas, and the cluster is implicate as a potential human oncogene.
Abstract: To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-17-92 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-17-92 locus are often substantially increased in these cancers. Enforced expression of the mir-17-92 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-17-92 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-17-92 cluster as a potential human oncogene.

3,735 citations

Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.
Abstract: The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.

3,625 citations


Network Information
Related Topics (5)
Bone marrow
87.5K papers, 3.1M citations
95% related
Progenitor cell
50.8K papers, 2.5M citations
92% related
Stem cell
129.1K papers, 5.9M citations
92% related
T cell
109.5K papers, 5.5M citations
87% related
Cellular differentiation
90.9K papers, 6M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,905
20223,033
20211,135
20201,175
20191,133