scispace - formally typeset
Search or ask a question
Topic

Hall effect

About: Hall effect is a research topic. Over the lifetime, 17467 publications have been published within this topic receiving 399490 citations.


Papers
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: In this article, the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field effect transistor, was measured and it was shown that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device.
Abstract: Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

5,619 citations

Journal ArticleDOI
TL;DR: It is shown that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls ofspin and valley in these 2D materials.
Abstract: We show that inversion symmetry breaking together with spin-orbit coupling leads to coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, making possible controls of spin and valley in these 2D materials The spin-valley coupling at the valence-band edges suppresses spin and valley relaxation, as flip of each index alone is forbidden by the valley-contrasting spin splitting Valley Hall and spin Hall effects coexist in both electron-doped and hole-doped systems Optical interband transitions have frequency-dependent polarization selection rules which allow selective photoexcitation of carriers with various combination of valley and spin indices Photoinduced spin Hall and valley Hall effects can generate long lived spin and valley accumulations on sample boundaries The physics discussed here provides a route towards the integration of valleytronics and spintronics in multivalley materials with strong spin-orbit coupling and inversion symmetry breaking

3,986 citations

Journal ArticleDOI
12 Apr 2013-Science
TL;DR: The observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3, a magnetic topological insulator shows a plateau in the Hall resistance as a function of the gating voltage without any applied magnetic fields, signifying the achievement of the QAH state.
Abstract: The quantized version of the anomalous Hall effect has been predicted to occur in magnetic topological insulators, but the experimental realization has been challenging. Here, we report the observation of the quantum anomalous Hall (QAH) effect in thin films of chromium-doped (Bi,Sb)2Te3, a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance reaches the predicted quantized value of h/e2, accompanied by a considerable drop in the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value. The realization of the QAH effect may lead to the development of low-power-consumption electronics.

2,972 citations

Journal ArticleDOI
TL;DR: In this paper, it is proposed that when a charge current circulates in a paramagnetic metal, a transverse spin imbalance will be generated, giving rise to a spin Hall voltage, in the absence of charge current and magnetic field.
Abstract: It is proposed that when a charge current circulates in a paramagnetic metal a transverse spin imbalance will be generated, giving rise to a ``spin Hall voltage.'' Similarly, it is proposed that when a spin current circulates a transverse charge imbalance will be generated, giving rise to a Hall voltage, in the absence of charge current and magnetic field. Based on these principles we propose an experiment to generate and detect a spin current in a paramagnetic metal.

2,337 citations


Network Information
Related Topics (5)
Magnetization
107.8K papers, 1.9M citations
94% related
Band gap
86.8K papers, 2.2M citations
94% related
Thin film
275.5K papers, 4.5M citations
93% related
Photoluminescence
83.4K papers, 1.8M citations
91% related
Quantum dot
76.7K papers, 1.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023308
2022594
2021503
2020577
2019540
2018520