scispace - formally typeset
Search or ask a question
Topic

Handover

About: Handover is a research topic. Over the lifetime, 24219 publications have been published within this topic receiving 296416 citations. The topic is also known as: handoff.


Papers
More filters
Proceedings ArticleDOI
24 Mar 1996
TL;DR: It is shown that the well-known guard channel policy is optimal for the MLNOBJ problem, while a new fractional guard channels policy is ideal for the MINBLOCK and MINC problems.
Abstract: Two important quality-of-service (QoS) measures for current cellular networks are the fractions of new and handoff "calls" that are blocked due to unavailability of "channels" (radio and/or computing resources). Based on these QoS measures, we derive optimal admission control policies for three problems: minimizing a linear objective function of the new and handoff call blocking probabilities (MINOBJ), minimizing the new call blocking probability with a hard constraint on the handoff call blocking probability (MINBLOCK) and minimizing the number of channels with hard constraints on both of the blocking probabilities (MINC). We show that the well-known guard channel policy is optimal for the MLNOBJ problem, while a new fractional guard channel policy is optimal for the MINBLOCK and MINC problems. The guard channel policy reserves a set of channels for handoff calls while the fractional guard channel policy effectively reserves a non-integral number of guard channels for handoff calls by rejecting new calls with a probability that depends on the current channel occupancy. It is also shown that the fractional policy results in significant savings (20-50%) in the new call blocking probability for the MINBLOCK problem and provides some, though small, gains over the integral guard channel policy for the MINC problem. Further, we also develop computationally inexpensive algorithms for the determination of the parameters for the optimal policies.

388 citations

01 Oct 2008
TL;DR: This document introduces extensions to Mobile IPv6 and IPv6 Neighbour Discovery to allow for local mobility handling and the Mobility Anchor Point (MAP) described in this document can also be used to improve the performance of Mobile IPv 6 in terms of handover speed.
Abstract: This document introduces extensions to Mobile IPv6 and IPv6 Neighbour Discovery to allow for local mobility handling. Hierarchical mobility management for Mobile IPv6 is designed to reduce the amount of signalling between the Mobile Node, its Correspondent Nodes, and its Home Agent. The Mobility Anchor Point (MAP) described in this document can also be used to improve the performance of Mobile IPv6 in terms of handover speed.

381 citations

Journal ArticleDOI
TL;DR: Different and novel aspects of handoff are presented and handoff related issues of fourth generation systems are discussed and desirable handoff features are presented.
Abstract: As mobile wireless networks increase in popularity and pervasiveness, we are faced with the challenge of combining a diverse number of wireless networks. The fourth generation of wireless communications is expected to integrate a potentially large number of heterogeneous wireless technologies in what could be considered a huge step forward toward universal seamless access. One of the main challenges for seamless mobility is the availability of reliable horizontal (intrasystem) and vertical (intersystem) handoff schemes. Efficient handoff schemes enhance quality of service and provide flawless mobility. This article presents different and novel aspects of handoff and discusses handoff related issues of fourth generation systems. Desirable handoff features are presented. Handoff decisions, radio link transfer, and channel assignment are described as stages of the complete handoff process. A vertical handoff decision function, which enables devices to assign weights to different network parameters, is also presented

377 citations

Journal ArticleDOI
TL;DR: It will be illustrated that the best strategy depends on the specific environment in which the nodes are deployed, and guidelines to inform the optimal choice as a function of the system parameters are given.
Abstract: The millimeter wave (mmWave) frequencies offer the availability of huge bandwidths to provide unprecedented data rates to next-generation cellular mobile terminals. However, mmWave links are highly susceptible to rapid channel variations and suffer from severe free-space pathloss and atmospheric absorption. To address these challenges, the base stations and the mobile terminals will use highly directional antennas to achieve sufficient link budget in wide area networks. The consequence is the need for precise alignment of the transmitter and the receiver beams, an operation which may increase the latency of establishing a link, and has important implications for control layer procedures, such as initial access, handover and beam tracking. This tutorial provides an overview of recently proposed measurement techniques for beam and mobility management in mmWave cellular networks, and gives insights into the design of accurate, reactive and robust control schemes suitable for a 3GPP NR (NR) cellular network. We will illustrate that the best strategy depends on the specific environment in which the nodes are deployed, and give guidelines to inform the optimal choice as a function of the system parameters.

367 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate and discuss serious limitations of the fourth generation (4G) cellular networks and corresponding new features of 5G networks, and present a comparative study of the proposed architectures that can be categorized on the basis of energy-efficiency, network hierarchy, and network types.

363 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
88% related
Wireless
133.4K papers, 1.9M citations
88% related
Wireless ad hoc network
49K papers, 1.1M citations
86% related
Network packet
159.7K papers, 2.2M citations
85% related
Wireless sensor network
142K papers, 2.4M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023338
2022759
2021511
2020816
2019824
2018865