scispace - formally typeset
Search or ask a question
Topic

Haptic technology

About: Haptic technology is a research topic. Over the lifetime, 18818 publications have been published within this topic receiving 306713 citations. The topic is also known as: haptics & haptic media.


Papers
More filters
Patent
18 Aug 2009
TL;DR: In this paper, a human-computer interface includes a display device configured to visually display images to a user and a touch sensitive device configurable to sense contact with the user, and a composite piezoelectric layer is configured to provide haptic feedback to the user.
Abstract: Human-computer interface devices are described in the present disclosure. In one embodiment, among several embodiments, a human-computer interface includes a display device configured to visually display images to a user and a touch sensitive device configured to sense contact with the user. Furthermore, the human-computer interface includes a composite piezoelectric layer positioned between the display device and the touch sensitive device. The composite piezoelectric layer is configured to provide haptic feedback to the user.

137 citations

Journal ArticleDOI
TL;DR: It is indicated that modifying a mouse to include tactile feedback, and to a lesser extent, force feedback, offers performance advantages in target selection tasks.
Abstract: A multi-modal mouse incorporating tactile and force feedback was tested in a target selection task with 12 subjects. Four feedback conditions (normal, tactile, force, tactile+force) were combined with three target distances and three target sizes. We found significant reductions in the overall movement times and in the time to stop the cursor after entering the target. This effect was particularly pronounced for the tactile condition and for small targets. However, compared to normal feedback, error rates were higher with the tactile and tactile+force conditions. The motor-sensory bandwidth calculated using Fitt's law, normalized for spatial variability, was highest in the presence of tactile feedback (6.4 bits/s). This was followed by tactile+force (6.2 bits/s), normal (5.9 bits /s), and force feedback (5.8 bits/s). These results indicate that modifying a mouse to include tactile feedback, and to a lesser extent, force feedback, offers performance advantages in target selection tasks.

137 citations

Journal ArticleDOI
TL;DR: An event-based iterative closest point algorithm to track a microgripper's position at a frequency of 4 kHz is introduced, using an asynchronous address event representation silicon retina and a conventional frame-based camera.
Abstract: Micromanipulation systems have recently been receiving increased attention. Teleoperated or automated micromanipulation is a challenging task due to the need for high-frequency position or force feedback to guarantee stability. In addition, the integration of sensors within micromanipulation platforms is complex. Vision is a commonly used solution for sensing; unfortunately, the update rate of the frame-based acquisition process of current available cameras cannot ensure-at reasonable costs-stable automated or teleoperated control at the microscale level, where low inertia produces highly unreachable dynamic phenomena. This paper presents a novel vision-based microrobotic system combining both an asynchronous address event representation silicon retina and a conventional frame-based camera. Unlike frame-based cameras, recent artificial retinas transmit their outputs as a continuous stream of asynchronous temporal events in a manner similar to the output cells of a biological retina, enabling high update rates. This paper introduces an event-based iterative closest point algorithm to track a microgripper's position at a frequency of 4 kHz. The temporal precision of the asynchronous silicon retina is used to provide a haptic feedback to assist users during manipulation tasks, whereas the frame-based camera is used to retrieve the position of the object that must be manipulated. This paper presents the results of an experiment on teleoperating a sphere of diameter around 50 μm using a piezoelectric gripper in a pick-and-place task.

137 citations

Proceedings ArticleDOI
14 Feb 2016
TL;DR: Snake-charmer is an attempt to provide physical form to virtual objects by revisiting the concept of Robotic Graphics or Encountered-type Haptic interfaces with current commodity hardware and explores what it means to truly interact with an object.
Abstract: Augmented and virtual reality have the potential of being indistinguishable from the real world. Holographic displays, including head mounted units, support this vision by creating rich stereoscopic scenes, with objects that appear to float in thin air - often within arm's reach. However, one has but to reach out and grasp nothing but air to destroy the suspension of disbelief. Snake-charmer is an attempt to provide physical form to virtual objects by revisiting the concept of Robotic Graphics or Encountered-type Haptic interfaces with current commodity hardware. By means of a robotic arm, Snake-charmer brings physicality to a virtual scene and explores what it means to truly interact with an object. We go beyond texture and position simulation and explore what it means to have a physical presence inside a virtual scene. We demonstrate how to render surface characteristics beyond texture and position, including temperature; how to physically move objects; and how objects can physically interact with the user's hand. We analyze our implementation, present the performance characteristics, and provide guidance for the construction of future physical renderers.

136 citations

Patent
19 May 2010
TL;DR: Methods of and apparatuses for providing human interaction with a computer, including human control of three dimensional input devices, force feedback, and force input, are described in this paper.
Abstract: Methods of and apparatuses for providing human interaction with a computer, including human control of three dimensional input devices, force feedback, and force input.

136 citations


Network Information
Related Topics (5)
Robot
103.8K papers, 1.3M citations
89% related
Mobile robot
66.7K papers, 1.1M citations
86% related
User interface
85.4K papers, 1.7M citations
82% related
Mobile device
58.6K papers, 942.8K citations
78% related
Control theory
299.6K papers, 3.1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023647
20221,508
2021745
20201,056
20191,180
20181,034