scispace - formally typeset
Topic

Harmonic

About: Harmonic is a(n) research topic. Over the lifetime, 44833 publication(s) have been published within this topic receiving 495922 citation(s). The topic is also known as: overtone & partial.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a limit cycle control of both flux and torque using optimum PWM output voltage; a switching table is employed for selecting the optimum inverter output voltage vectors so as to attain as fast a torque response, as low an inverter switching frequency, and as low harmonic losses as possible.
Abstract: New quick-response and high-efficiency control of an induction motor, which is quite different from that of the field-oriented control is proposed. The most obvious differences between the two are as follows. 1) The proposed scheme is based on limit cycle control of both flux and torque using optimum PWM output voltage; a switching table is employed for selecting the optimum inverter output voltage vectors so as to attain as fast a torque response, as low an inverter switching frequency, and as low harmonic losses as possible. 2) The efficiency optimization in the steady-state operation is also considered; it can be achieved by controlling the amplitude of the flux in accordance with the torque command. To verify the feasibility of this scheme, experimentation, simulation, and comparison with field-oriented control are carried out. The results prove the excellent characteristics for torque response and efficiency, which confirm the validity of this control scheme.

3,206 citations

Journal ArticleDOI
09 Feb 1989-Nature
TL;DR: In this article, the authors used second-harmonic generation and the related technique of infrared-visible light sum-frequency generation to monitor surface dynamics and reactions with sub-picosecond time resolution.
Abstract: Optical second-harmonic generation and the related technique of infrared – visible light sum-frequency generation are extremely versatile tools for studies of many kinds of surfaces and interfaces. With the help of ultra-short laser pulses, they can be used to monitor surface dynamics and reactions with sub-picosecond time resolution.

1,899 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the present status of active filters based on state-of-the-art power electronics technology, and their future prospects and directions toward the 21st Century, including the personal views and expectations of the author.
Abstract: Attention has been paid to active filters for power conditioning which provide the following multifunctions: reactive power compensation; harmonic compensation; flicker/imbalance compensation; and voltage regulation. Active filters in a range of 50 kVA-60 MVA have been practically installed in Japan. In the near future, the term "active filters" will have a much wider meaning than it did in the 1970s. For instance, active filters intended for harmonic solutions are expanding their functions from harmonic compensation of nonlinear loads into harmonic isolation between utilities and consumers, and harmonic damping throughout power distribution systems. This paper presents the present status of active filters based on state-of-the-art power electronics technology, and their future prospects and directions toward the 21st Century, including the personal views and expectations of the author.

1,645 citations

Journal ArticleDOI
TL;DR: New methods of analysis, which involve some of the mathematical apparatus of quantum theory, are illustrated by application to some problems of transmission theory, such as direct generation of single sidebands, signals transmitted in minimum time through limited frequency channels, frequency modulation and time-division multiplex telephony.
Abstract: Hitherto communication theory was based on two alternative methods of signal analysis. One is the description of the signal as a function of time; the other is Fourier analysis. Both are idealizations, as the first method operates with sharply defined instants of time, the second with infinite wave-trains of rigorously defined frequencies. But our everyday experiences?especially our auditory sensations?insist on a description in terms of both time and frequency. In the present paper this point of view is developed in quantitative language. Signals are represented in two dimensions, with time and frequency as co-ordinates. Such two-dimensional representations can be called ?information diagrams,? as areas in them are proportional to the number of independent data which they can convey. This is a consequence of the fact that the frequency of a signal which is not of infinite duration can be defined only with a certain inaccuracy, which is inversely proportional to the duration, and vice versa. This ?uncertainty relation? suggests a new method of description, intermediate between the two extremes of time analysis and spectral analysis. There are certain ?elementary signals? which occupy the smallest possible area in the information diagram. They are harmonic oscillations modulated by a ?probability pulse.? Each elementary signal can be considered as conveying exactly one datum, or one ?quantum of information.? Any signal can be expanded in terms of these by a process which includes time analysis and Fourier analysis as extreme cases. These new methods of analysis, which involve some of the mathematical apparatus of quantum theory, are illustrated by application to some problems of transmission theory, such as direct generation of single sidebands, signals transmitted in minimum time through limited frequency channels, frequency modulation and time-division multiplex telephony.

1,155 citations

01 Jan 2000
TL;DR: In this paper, a decomposition of the spectral density function matrix is introduced for the modal identification of output-only systems, i.e. in the case where the modality parameters must be estimated without knowing the input of the system.
Abstract: In this paper a new frequency domain technique is introduced for the modal identification of output-only systems, i.e. in the case where the modal parameters must be estimated without knowing the input exciting the system. By its user friendliness the technique is closely related to the classical approach where the modal parameters are estimated by simple peak picking. However, by introducing a decomposition of the spectral density function matrix, the response spectra can be separated into a set of single degree of freedom systems, each corresponding to an individual mode. By using this decomposition technique close modes can be identified with high accuracy even in the case of strong noise contamination of the signals. Also, the technique clearly indicates harmonic components in the response signals.

1,103 citations

Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
86% related
Voltage
296.3K papers, 1.7M citations
85% related
Boundary value problem
145.3K papers, 2.7M citations
81% related
Matrix (mathematics)
105.5K papers, 1.9M citations
79% related
Magnetic field
167.5K papers, 2.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202273
20211,839
20202,319
20192,608
20182,495
20172,278