scispace - formally typeset
Search or ask a question
Topic

Harmonic

About: Harmonic is a research topic. Over the lifetime, 44833 publications have been published within this topic receiving 495922 citations. The topic is also known as: overtone & partial.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that the HR method may be better defined, not as a measure of rhythmicity or stability, but as a measures of step-to-step symmetry within a stride.

121 citations

Journal ArticleDOI
TL;DR: It is found that it is possible to suitably detect arc faults by means of a high-resolution low-frequency harmonic analysis of current signal, based on chirp zeta transform, and a proper set of indicators.
Abstract: This paper presents a method for the detection of series arc faults in electrical circuits, which has been developed starting from an experimental characterization of the arc fault phenomenon and an arcing current study in several test conditions. Starting from this, the authors have found that is it possible to suitably detect arc faults by means of a high-resolution low-frequency harmonic analysis of current signal, based on chirp zeta transform, and a proper set of indicators. The proposed method effectiveness is shown by means of experimental tests, which were carried in both arcing and nonarcing conditions and in the presence of different loads, chosen according to the UL 1699 standard requirements.

121 citations

Journal ArticleDOI
TL;DR: In this article, a study of faradaic admittance versus frequency measurements based on Fourier analysis of the response to multiple-frequency test signal waveforms is presented, where data are acquired using complex periodic signals, almost periodic signals; transient inputs; and bandwidth-limited white noise.

121 citations

Journal ArticleDOI
04 Sep 2008-Nature
TL;DR: Amplitude spectroscopy is introduced, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency, thereby overcoming many of the limitations of a broadband-frequency-based approach.
Abstract: The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.

120 citations

Journal ArticleDOI
TL;DR: In this paper, a framework for analysis of harmonics in a doubly fed induction generator (DFIG) caused by nonsinusoidal conditions in rotor and unbalance in stator was developed.
Abstract: This paper develops a framework for analysis of harmonics in a doubly fed induction generator (DFIG) caused by nonsinusoidal conditions in rotor and unbalance in stator. Nonsinusoidal rotor voltages are decomposed into harmonic components and their corresponding sequences are identified. Induced harmonics in stator are analyzed and computed, from which the torques produced by these interactions between stator and rotor harmonic components can be found. During unbalanced stator conditions, symmetric component theory is applied to the stator voltage to get positive-, negative-, and zero-sequence components of stator and rotor currents. The steady-state negative-sequence equivalent circuit for a DFIG is derived based on the reference frame theory. Harmonic currents in the rotor are computed based on the sequence circuits. In both scenarios, the harmonic components of the electromagnetic torque are calculated from the interactions of the harmonic components of the stator and rotor currents. Three case studies are considered, namely: 1) nonsinusoidal rotor injection; 2) an isolated unbalanced stator load scenario; and 3) unbalanced grid-connected operation. The analysis is verified with results from numerical simulations in Matlab/Simulink. For illustration, the second case is verified using experiments. The simulation results and experimental results agree well with the results from analysis.

120 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
86% related
Voltage
296.3K papers, 1.7M citations
85% related
Boundary value problem
145.3K papers, 2.7M citations
81% related
Matrix (mathematics)
105.5K papers, 1.9M citations
79% related
Magnetic field
167.5K papers, 2.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,223
20222,724
20211,878
20202,330
20192,612
20182,495