scispace - formally typeset
Search or ask a question
Topic

Harmonic

About: Harmonic is a research topic. Over the lifetime, 44833 publications have been published within this topic receiving 495922 citations. The topic is also known as: overtone & partial.


Papers
More filters
Journal ArticleDOI
TL;DR: This Letter experimentally demonstrates the nonlinear-optical mirror effect in a bulk negative-index nonlinear metamaterial, along with two other novel phase-matching configurations, utilizing periodic poling to switch between the three phase- matching domains.
Abstract: Nonlinear metamaterials have been predicted to support new and exciting domains in the manipulation of light, including novel phase-matching schemes for wave mixing. Most notable is the so-called nonlinear-optical mirror, in which a nonlinear negative-index medium emits the generated frequency towards the source of the pump. In this Letter, we experimentally demonstrate the nonlinear-optical mirror effect in a bulk negative-index nonlinear metamaterial, along with two other novel phase-matching configurations, utilizing periodic poling to switch between the three phase-matching domains.

120 citations

Journal ArticleDOI
TL;DR: In this paper, the amplitude of the fundamental harmonic of these discrete data serves as the imbalance indicator of the proposed scheme, therefore, overcomes small load and slip fluctuations, and the measured results of a mechanically unbalanced machine and a case of combined static and dynamic eccentricity are presented.
Abstract: Mechanical rotor imbalances and rotor eccentricities are reflected in electric, electromagnetic, and mechanical quantities. Therefore, many surveillance schemes determine the Fourier spectrum of a single line current in order to monitor the motor condition. Mechanical imbalances give rise to two first-order current harmonics. Due to the interaction of the currents and voltages, both these current harmonics are also reflected by a single harmonic component in the frequency spectrum of the electric power. This single component is easier to assess than both the current harmonics. The technique proposed in this contribution evaluates this imbalance-specific modulation of the electric power. The proposed approach does not determine the Fourier spectrum of a time-domain signal, though. First, the imbalance specific oscillation of the electric power is extracted by a bandpass filter. Then, the averaged pattern of this component is determined by means of an angular data clustering technique. In that way, the oscillation of the electric power in the time domain becomes mapped into a discrete waveform in an angular domain. The amplitude of the fundamental harmonic of these discrete data serves as the imbalance indicator of the proposed scheme. This technique, therefore, overcomes small load and slip fluctuations. Measured results of a mechanically unbalanced machine and a case of combined static and dynamic eccentricity are presented.

120 citations

Journal ArticleDOI
TL;DR: This paper investigates torque ripple minimization for permanent-magnet synchronous machine (PMSM), and proposes a closed-loop fuzzy-logic-based current controller by using the magnitude of the speed harmonic as the feedback control signal.
Abstract: This paper investigates torque ripple minimization for permanent-magnet synchronous machine (PMSM), and proposes a closed-loop fuzzy-logic-based current controller by using the magnitude of the speed harmonic as the feedback control signal. The speed harmonic can be obtained from machine speed measurement, so the proposed approach does not require accurate machine parameters and is not influenced by the nonlinearity of the machine and drive. The torque harmonic can produce the speed harmonic of the same order, so their relation is investigated, which shows that the magnitude of the speed harmonic is proportional to the magnitude of the torque harmonic of the same order, so it can be used as a measure of torque harmonic for torque ripple minimization. Then, the torque harmonic model is developed to facilitate the design and analysis of the current controller. Afterward, a novel fuzzy-logic-based current controller is proposed to minimize the dominant torque harmonics. The proposed current controller is evaluated on a laboratory PMSM drive system under different load conditions and operation speeds.

120 citations

Journal ArticleDOI
TL;DR: In this article, an FET is analyzed to gain an understanding, useful to the circuit designer, of the contributing mechanisms, and to enable the prediction of bias points and the design of networks that can minimize or maximize these effects.
Abstract: The intermodulation performance of an FET in the common-source configuration is dependent on the impedance presented to its gate and drain terminals, not only at fundamental, but also at harmonic and baseband frequencies. At baseband frequencies, these terminating impedances are usually determined by the bias networks, which may have varying impedance over the frequencies involved. This can give rise to asymmetry in two-tone intermodulation levels, and changing intermodulation levels with tone spacing, as previous studies have shown. In this paper, an FET is analyzed to gain an understanding, useful to the circuit designer, of the contributing mechanisms, and to enable the prediction of bias points and the design of networks that can minimize or maximize these effects. Compact formulas are given to facilitate this. An amplifier was tested, showing good agreement between the theoretical and measured results.

119 citations

Journal ArticleDOI
TL;DR: The saturable absorption and harmonic-mode-locking performance of the prepared SA are compared with those of previously demonstrated SAs that are based on other transition metal dichalcogenides (TMDs) to the best of the authors' knowledge.
Abstract: We experimentally demonstrate the use of a bulk-like, MoSe2-based saturable absorber (SA) as a passive harmonic mode-locker for the production of femtosecond pulses from a fiber laser at a repetition rate of 3.27 GHz. By incorporating a bulk-like, MoSe2/PVA-composite-deposited side-polished fiber as an SA within an erbium-doped-fiber-ring cavity, mode-locked pulses with a temporal width of 737 fs to 798 fs can be readily obtained at various harmonic frequencies. The fundamental resonance frequency and the maximum harmonic-resonance frequency are 15.38 MHz and 3.27 GHz (212th harmonic), respectively. The temporal and spectral characteristics of the output pulses are systematically investigated as a function of the pump power. The output pulses exhibited Gaussian-temporal shapes irrespective of the harmonic order, and even when their spectra possessed hyperbolic-secant shapes. The saturable absorption and harmonic-mode-locking performance of our prepared SA are compared with those of previously demonstrated SAs that are based on other transition metal dichalcogenides (TMDs). To the best of the authors' knowledge, the repetition rate of 3.27 GHz is the highest frequency that has ever been demonstrated regarding the production of femtosecond pulses from a fiber laser that is based on SA-induced passive harmonic mode-locking.

119 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
86% related
Voltage
296.3K papers, 1.7M citations
85% related
Boundary value problem
145.3K papers, 2.7M citations
81% related
Matrix (mathematics)
105.5K papers, 1.9M citations
79% related
Magnetic field
167.5K papers, 2.3M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,223
20222,724
20211,878
20202,330
20192,612
20182,495