Topic
Harmonic wavelet transform
About: Harmonic wavelet transform is a(n) research topic. Over the lifetime, 9602 publication(s) have been published within this topic receiving 247336 citation(s).
Papers published on a yearly basis
Papers
More filters
Book•
[...]
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.
17,299 citations
[...]
IBM1
TL;DR: In this article, the use of the fast Fourier transform in power spectrum analysis is described, and the method involves sectioning the record and averaging modified periodograms of the sections.
Abstract: The use of the fast Fourier transform in power spectrum analysis is described. Principal advantages of this method are a reduction in the number of computations and in required core storage, and convenient application in nonstationarity tests. The method involves sectioning the record and averaging modified periodograms of the sections.
8,370 citations
[...]
01 Jan 1978
TL;DR: A comprehensive catalog of data windows along with their significant performance parameters from which the different windows can be compared is included, and an example demonstrates the use and value of windows to resolve closely spaced harmonic signals characterized by large differences in amplitude.
Abstract: This paper makes available a concise review of data windows and their affect on the detection of harmonic signals in the presence of broad-band noise, and in the presence of nearby strong harmonic interference. We also call attention to a number of common errors in the application of windows when used with the fast Fourier transform. This paper includes a comprehensive catalog of data windows along with their significant performance parameters from which the different windows can be compared. Finally, an example demonstrates the use and value of windows to resolve closely spaced harmonic signals characterized by large differences in amplitude.
6,731 citations
[...]
TL;DR: Two different procedures for effecting a frequency analysis of a time-dependent signal locally in time are studied and the notion of time-frequency localization is made precise, within this framework, by two localization theorems.
Abstract: Two different procedures for effecting a frequency analysis of a time-dependent signal locally in time are studied. The first procedure is the short-time or windowed Fourier transform; the second is the wavelet transform, in which high-frequency components are studied with sharper time resolution than low-frequency components. The similarities and the differences between these two methods are discussed. For both schemes a detailed study is made of the reconstruction method and its stability as a function of the chosen time-frequency density. Finally, the notion of time-frequency localization is made precise, within this framework, by two localization theorems. >
5,889 citations
[...]
TL;DR: It is proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents.
Abstract: The mathematical characterization of singularities with Lipschitz exponents is reviewed. Theorems that estimate local Lipschitz exponents of functions from the evolution across scales of their wavelet transform are reviewed. It is then proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations has a particular behavior that is studied separately. The local frequency of such oscillations is measured from the wavelet transform modulus maxima. It has been shown numerically that one- and two-dimensional signals can be reconstructed, with a good approximation, from the local maxima of their wavelet transform modulus. As an application, an algorithm is developed that removes white noises from signals by analyzing the evolution of the wavelet transform maxima across scales. In two dimensions, the wavelet transform maxima indicate the location of edges in images. >
3,941 citations