scispace - formally typeset
Search or ask a question
Topic

Hartley transform

About: Hartley transform is a research topic. Over the lifetime, 2709 publications have been published within this topic receiving 79944 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The fractional Fourier transform is used for the object reconstruction and the fractional cosine and fractional Hartley transforms are employed for object reconstruction to allow the reconstruction to be done with lower computing complexity.
Abstract: We propose a method for the digital reconstruction of an object whose diffraction pattern has been recorded on a hologram. The fractional Fourier transform is used for the object reconstruction. To determine the position of the object, the fractional order is scanned. The fractional cosine and fractional Hartley transforms are also employed for object reconstruction. These two transforms are real valued and allow the reconstruction to be done with lower computing complexity. Simulations and experimental results are presented.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the Radon transform of a function is defined as an integration over planes whose normals vary over the entire unit sphere, and it is shown that only the transform over a hemisphere, which can consist of disconnected parts, is required to reconstruct the original function.
Abstract: The Radon transform of a function is defined as an integration over planes whose normals vary over the entire unit sphere. The space is actually covered twice because the distance of the plane from the origin is allowed to be positive or negative. The usual inverse transform requires knowledge of the transform evaluated over the entire sphere. However, we shall show that only the transform over a hemisphere, which can consist of disconnected parts, is required to reconstruct the original function . Thus the redundancy of the double-covering is removed and only one-half of the transform is needed to recover the original function. In essence we have introduced optical coordinates. We then consider function f(x) obtained by applying the inverse Radon transform to an arbitrary function which has the same arguments as the Radon transform but is not, in general, a Radon transform. On applying the Radon transform to f(x) we find that only part of the arbitrary function, to which the inverse was applied, is reproduced. Thus the Radon transform has a left inverse but not a right inverse. However, by restricting the range of variables in the transform space, a right and left inverse can be obtained which are the same. Finally, we give Parseval’s theorem in terms of the refined Radon transform. Though we modify the older proofs for obtaining the Radon transform and its inverse, for the sake of a self-contained paper we also use new elementary proofs based on relations which we have derived between one­-dimensional and three-dimensional delta functions. We expect that our result will have consequences in tomography and other applications. We ourselves will use the result to obtain the exact fields for the scalar three-dimensional wave equation and Maxwell’s equations from fields in the wave zone, and, conversely, fields in the wave zone from the exact causal fields. In fact, the principal reason for our writing the present paper is to cast the Radon transform and its inverse in a form suitable for these applications. Though we shall prove our result for the three-dimensional case only, the proof for the general case can be inferred from our proof.

9 citations

Journal ArticleDOI
TL;DR: In this article, the disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them.
Abstract: The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.

9 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
81% related
Image processing
229.9K papers, 3.5M citations
80% related
Optimization problem
96.4K papers, 2.1M citations
79% related
Feature extraction
111.8K papers, 2.1M citations
78% related
Matrix (mathematics)
105.5K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202230
202110
202014
201915
201820