scispace - formally typeset
Search or ask a question
Topic

Hartley transform

About: Hartley transform is a research topic. Over the lifetime, 2709 publications have been published within this topic receiving 79944 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new class of the "frequency domain"-based signal/image enhancement algorithms including magnitude reduction, log-magnitude reduction, iterative magnitude and a log-reduction zonal magnitude technique, based on the so-called sequency ordered orthogonal transforms, which include the well-known Fourier, Hartley, cosine, and Hadamard transforms.
Abstract: This paper presents a new class of the "frequency domain"-based signal/image enhancement algorithms including magnitude reduction, log-magnitude reduction, iterative magnitude and a log-reduction zonal magnitude technique. These algorithms are described and applied for detection and visualization of objects within an image. The new technique is based on the so-called sequency ordered orthogonal transforms, which include the well-known Fourier, Hartley, cosine, and Hadamard transforms, as well as new enhancement parametric operators. A wide range of image characteristics can be obtained from a single transform, by varying the parameters of the operators. We also introduce a quantifying method to measure signal/image enhancement called EME. This helps choose the best parameters and transform for each enhancement. A number of experimental results are presented to illustrate the performance of the proposed algorithms.

373 citations

Journal ArticleDOI
TL;DR: A refinement of the Fourier transform fringe-pattern analysis technique which uses a 2-D Fouriertransform permits better separation of the desired information components from unwanted components than a 1-D transform.
Abstract: A refinement of the Fourier transform fringe-pattern analysis technique which uses a 2-D Fourier transform is described. The 2-D transform permits better separation of the desired information components from unwanted components than a 1-D transform. The accuracy of the technique when applied to real data recorded by a system with a nonlinear response function is investigated. This leads to simple techniques for optimizing an interferogram for analysis by these Fourier transform methods and to an estimate of the error in the retrieved fringe shifts. This estimate is tested on simulated data and found to be reliable.

363 citations

Book
01 Jan 1987
TL;DR: This book discusses the Discrete Fourier Transform (DFT) and a few applications of the DFT, as well as some of the techniques used in real sequences and the Real DFT.
Abstract: Preface 1. Introduction. A Bit of History An Application Problems 2. The Discrete Fourier Transform (DFT). Introduction DFT Approximation to the Fourier Transform The DFT-IDFT pair DFT Approximations to Fourier Series Coefficients The DFT from Trigonometric Approximation Transforming a Spike Train Limiting Forms of the DFT-IDFT Pair Problems 3. Properties of the DFT. Alternate Forms for the DFT Basic Properties of the DFT Other Properties of the DFT A Few Practical Considerations Analytical DFTs Problems 4. Symmetric DFTs. Introduction Real sequences and the Real DFT (RDFT) Even Sequences and the Discrete Cosine Transform (DST) Odd Sequences and the Discrete Sine Transform (DST) Computing Symmetric DFTs Notes Problems 5. Multi-dimensional DFTs. Introduction Two-dimensional DFTs Geometry of Two-Dimensional Modes Computing Multi-Dimensional DFTs Symmetric DFTs in Two Dimensions Problems 6. Errors in the DFT. Introduction Periodic, Band-limited Input Periodic, Non-band-limited Input Replication and the Poisson Summation Formula Input with Compact Support General Band-Limited Functions General Input Errors in the Inverse DFT DFT Interpolation - Mean Square Error Notes and References Problems 7. A Few Applications of the DFT. Difference Equations - Boundary Value Problems Digital Filtering of Signals FK Migration of Seismic Data Image Reconstruction from Projections Problems 8. Related Transforms. Introduction The Laplace Transform The z- Transform The Chebyshev Transform Orthogonal Polynomial Transforms The Discrete Hartley Transform (DHT) Problems 9. Quadrature and the DFT. Introduction The DFT and the Trapezoid Rule Higher Order Quadrature Rules Problems 10. The Fast Fourier Transform (FFT). Introduction Splitting Methods Index Expansions (One ---> Multi-dimensional) Matrix Factorizations Prime Factor and Convolution Methods FFT Performance Notes Problems Glossary of (Frequently and Consistently Used) Notations References.

354 citations

Journal ArticleDOI
TL;DR: The 2D quaternion or hypercomplex Fourier transform is introduced in this paper to handle colour images in the frequency domain in a holistic manner, without separate handling of the colour components, and thus makes possible very wide generalisation of monochrome frequency domain techniques to colour images.
Abstract: The 2D quaternion, or hypercomplex, Fourier transform is introduced. This transform makes possible the handling of colour images in the frequency domain in a holistic manner, without separate handling of the colour components, and it thus makes possible very wide generalisation of monochrome frequency domain techniques to colour images.

329 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
81% related
Image processing
229.9K papers, 3.5M citations
80% related
Optimization problem
96.4K papers, 2.1M citations
79% related
Feature extraction
111.8K papers, 2.1M citations
78% related
Matrix (mathematics)
105.5K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202230
202110
202014
201915
201820