scispace - formally typeset
Search or ask a question
Topic

Hartmann number

About: Hartmann number is a research topic. Over the lifetime, 2593 publications have been published within this topic receiving 61342 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the exact solutions of the Couette, Poiseuille and generalized Couette flows of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium are presented.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of squeeze Reynolds number, Hartmann number and the suction/injection parameter on the velocity field was investigated and the results reveal that HAM and HPM are very effective and convenient.
Abstract: An analysis has been performed to study the problem of magneto-hydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite, parallel disks. The analytical methods called Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) have been used to solve nonlinear differential equations. It has been attempted to show the capabilities and wide-range applications of the proposed methods in comparison with a type of numerical analysis as Boundary Value Problem (BVP) in solving this problem. Also, the velocity fields have been computed and shown graphically for various values of physical parameters. The objective of the present work is to investigate the effect of squeeze Reynolds number, Hartmann number and the suction/injection parameter on the velocity field. Furthermore, the results reveal that HAM and HPM are very effective and convenient.

37 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid (Cu-Al2O3-water).
Abstract: We consider the combined effect of the magnetic field and heat transfer inside a square cavity containing a hybrid nanofluid (Cu-Al2O3-water). The upper and bottom walls of the cavity have a wavy shape. The temperature of the vertical walls is lower, the third part in the middle of the bottom wall is kept at a constant higher temperature, and the remaining parts of the bottom wall and the upper wall are thermally insulated. The magnetic field is applied under the angle γ, an opposite clockwise direction. For the numerical simulation, the finite element technique is employed. The ranges of the characteristics are as follows: the Rayleigh number (103 ⩽ Ra ⩽ 105), the Hartmann number (0 ⩽ Ha ⩽ 100), the nanoparticle hybrid concentration (ϕAl2o3, ϕCu = 0, 0.025, 0.05), the magnetic field orientation (0 ⩽ γ ⩽ 2π), and the Prandtl number Pr, the amplitude of wavy cavity A, and the number of waviness n are fixed at Pr = 7, A = 0.1, and n = 3, respectively. The comparison with a reported finding in the open literature is done, and the data are observed to be in very good agreement. The effects of the governing parameters on the energy transport and fluid flow parameters are studied. The results prove that the increment of the magnetic influence determines the decrease of the energy transference because the conduction motion dominates the fluid movement. When the Rayleigh number is raised, the Nusselt number is increased, too. For moderate Rayleigh numbers, the maximum ratio of the heat transfer takes place for the hybrid nanofluid and then the Cu-nanofluid, followed by the Al2O3-nanofluid. The nature of motion and energy transport parameters has been scrutinized.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically, where the enclosure is under constant magnetic field.
Abstract: In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the free convection and radiation heat transfer of the alumina/water nanofluid in a two-dimensional square cavity at an angle of 45° with the horizontal has been studied numerically.

37 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
85% related
Turbulence
112.1K papers, 2.7M citations
80% related
Boundary layer
64.9K papers, 1.4M citations
80% related
Partial differential equation
70.8K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022234
2021236
2020219
2019231
2018176