scispace - formally typeset
Search or ask a question

Showing papers on "Hazy Sighted Link State Routing Protocol published in 2005"


Journal ArticleDOI
01 May 2005
TL;DR: The three main categories explored in this paper are data-centric, hierarchical and location-based; each routing protocol is described and discussed under the appropriate category.
Abstract: Recent advances in wireless sensor networks have led to many new protocols specifically designed for sensor networks where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. This paper surveys recent routing protocols for sensor networks and presents a classification for the various approaches pursued. The three main categories explored in this paper are data-centric, hierarchical and location-based. Each routing protocol is described and discussed under the appropriate category. Moreover, protocols using contemporary methodologies such as network flow and quality of service modeling are also discussed. The paper concludes with open research issues. � 2003 Elsevier B.V. All rights reserved.

3,573 citations


Journal ArticleDOI
TL;DR: A detailed investigation of current state-of-the-art protocols and algorithms for WMNs is presented and open research issues in all protocol layers are discussed to spark new research interests in this field.
Abstract: Wireless mesh networks (WMNs) have emerged as a key technology for next-generation wireless networking. Because of their advantages over other wireless networks, WMNs are undergoing rapid progress and inspiring numerous applications. However, many technical issues still exist in this field. In order to provide a better understanding of the research challenges of WMNs, this article presents a detailed investigation of current state-of-the-art protocols and algorithms for WMNs. Open research issues in all protocol layers are also discussed, with an objective to spark new research interests in this field.

1,785 citations


Journal ArticleDOI
TL;DR: This paper presents attacks against routing in ad hoc networks, and the design and performance evaluation of a new secure on-demand ad hoc network routing protocol, called Ariadne, which prevents attackers or compromised nodes from tampering with uncompromising routes consisting of uncompromised nodes.
Abstract: An ad hoc network is a group of wireless mobile computers (or nodes), in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range. Prior research in ad hoc networking has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we present attacks against routing in ad hoc networks, and we present the design and performance evaluation of a new secure on-demand ad hoc network routing protocol, called Ariadne. Ariadne prevents attackers or compromised nodes from tampering with uncompromised routes consisting of uncompromised nodes, and also prevents many types of Denial-of-Service attacks. In addition, Ariadne is efficient, using only highly efficient symmetric cryptographic primitives.

1,230 citations


Proceedings ArticleDOI
28 Aug 2005
TL;DR: A solution is developed that optimizes the overall network throughput subject to fairness constraints on allocation of scarce wireless capacity among mobile clients, and the performance of the algorithms is within a constant factor of that of any optimal algorithm for the joint channel assignment and routing problem.
Abstract: Multi-hop infrastructure wireless mesh networks offer increased reliability, coverage and reduced equipment costs over their single-hop counterpart, wireless LANs. Equipping wireless routers with multiple radios further improves the capacity by transmitting over multiple radios simultaneously using orthogonal channels. Efficient channel assignment and routing is essential for throughput optimization of mesh clients. Efficient channel assignment schemes can greatly relieve the interference effect of close-by transmissions; effective routing schemes can alleviate potential congestion on any gateways to the Internet, thereby improving per-client throughput. Unlike previous heuristic approaches, we mathematically formulate the joint channel assignment and routing problem, taking into account the interference constraints, the number of channels in the network and the number of radios available at each mesh router. We then use this formulation to develop a solution for our problem that optimizes the overall network throughput subject to fairness constraints on allocation of scarce wireless capacity among mobile clients. We show that the performance of our algorithms is within a constant factor of that of any optimal algorithm for the joint channel assignment and routing problem. Our evaluation demonstrates that our algorithm can effectively exploit the increased number of channels and radios, and it performs much better than the theoretical worst case bounds.

1,154 citations


Journal ArticleDOI
TL;DR: This work proposes a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications and implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams.
Abstract: Routing protocols for mobile ad hoc networks (MANETs) have been explored extensively in recent years. Much of this work is targeted at finding a feasible route from a source to a destination without considering current network traffic or application requirements. Therefore, the network may easily become overloaded with too much traffic and the application has no way to improve its performance under a given network traffic condition. While this may be acceptable for data transfer, many real-time applications require quality-of-service (QoS) support from the network. We believe that such QoS support can be achieved by either finding a route to satisfy the application requirements or offering network feedback to the application when the requirements cannot be met. We propose a QoS-aware routing protocol that incorporates an admission control scheme and a feedback scheme to meet the QoS requirements of real-time applications. The novel part of this QoS-aware routing protocol is the use of the approximate bandwidth estimation to react to network traffic. Our approach implements these schemes by using two bandwidth estimation methods to find the residual bandwidth available at each node to support new streams. We simulate our QoS-aware routing protocol for nodes running the IEEE 802.11 medium access control. Results of our experiments show that the packet delivery ratio increases greatly, and packet delay and energy dissipation decrease significantly, while the overall end-to-end throughput is not impacted, compared with routing protocols that do not provide QoS support.

510 citations


Proceedings Article
01 Dec 2005
TL;DR: This paper first analyzes the possible types of routing protocols that can be used and shows that proactive hop-by-hop routing protocols are the most appropriate for mesh networks, and studies several existing routing metrics, including hop count, ETX, ETT, WCETT and MIC.
Abstract: Designing routing metrics is critical for performance in wireless mesh networks. The unique characteristics of mesh networks, such as static nodes and the shared nature of the wireless medium, invalidate existing solutions from both wired and wireless networks and impose unique requirements on designing routing metrics for mesh networks. In this paper, we focus on identifying these requirements. We first analyze the possible types of routing protocols that can be used and show that proactive hop-by-hop routing protocols are the most appropriate for mesh networks. Then, we examine the requirements for designing routing metrics according to the characteristics of mesh networks and the type of routing protocols used. Finally, we study several existing routing metrics, including hop count, ETX, ETT, WCETT and MIC in terms of their ability to satisfy these requirements. Our simulation results of the performance of these metrics confirm our analysis of these metrics.

468 citations


Proceedings ArticleDOI
05 Dec 2005
TL;DR: This work adopts here an interference-aware cross-layer design to increase the throughput of the wireless mesh network and creates a tree-based routing framework, which along with scheduling is interference aware and results in a much higher spectral efficiency.
Abstract: The IEEE 802.16 WiMax standard provides a mechanism for creating multi-hop mesh, which can be deployed as a high speed wide-area wireless network To realize the full potential of such high-speed IEEE 802.16 mesh networks, two efficient wireless radio resource allocation extensions were developed The objective of this paper is to propose an efficient approach for increasing the utilization of WiMax mesh through appropriate design of multi-hop routing and scheduling. As multiple-access interference is a major limiting factor for wireless communication systems, we adopt here an interference-aware cross-layer design to increase the throughput of the wireless mesh network. In particular, our scheme creates a tree-based routing framework, which along with scheduling is interference aware and results in a much higher spectral efficiency. Performance evaluation results show that the proposed interference-aware scheme achieves significant throughput enhancement over the basic IEEE 802.16 mesh network.

337 citations


Proceedings ArticleDOI
22 Aug 2005
TL;DR: A metric that estimates the average waiting time for each potential next hop is designed, which provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge.
Abstract: Delay-tolerant networks (DTNs) have the potential to connect devices and areas of the world that are under-served by current networks. A critical challenge for DTNs is determining routes through the network without ever having an end-to-end connection, or even knowing which "routers" will be connected at any given time. Prior approaches have focused either on epidemic message replication or on knowledge of the connectivity schedule. The epidemic approach of replicating messages to all nodes is expensive and does not appear to scale well with increasing load. It can, however, operate without any prior network configuration. The alternatives, by requiring a priori connectivity knowledge, appear infeasible for a self-configuring network.In this paper we present a practical routing protocol that only uses observed information about the network. We designed a metric that estimates how long a message will have to wait before it can be transferred to the next hop. The topology is distributed using a link-state routing protocol, where the link-state packets are "flooded" using epidemic routing. The routing is recomputed when connections are established. Messages are exchanged if the topology suggests that a connected node is "closer" than the current node.We demonstrate through simulation that our protocol provides performance similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires a significantly smaller quantity of buffer, suggesting that our approach will scale with the number of messages in the network, where replication approaches may not.

327 citations


Journal ArticleDOI
01 Apr 2005
TL;DR: Stable, scalable load-sharing across paths, based on end-to-end measurements, can be achieved on the same rapid time- scale as rate control, namely the time-scale of round-trip times.
Abstract: Dynamic multi-path routing has the potential to improve the reliability and performance of a communication network, but carries a risk. Routing needs to respond quickly to achieve the potential benefits, but not so quickly that the network is destabilized. This paper studies how rapidly routing can respond, without compromising stability.We present a sufficient condition for the local stability of end-to-end algorithms for joint routing and rate control. The network model considered allows an arbitrary interconnection of sources and resources, and heterogeneous propagation delays. The sufficient condition we present is decentralized: the responsiveness of each route is restricted by the round-trip time of that route alone, and not by the round-trip times of other routes. Our results suggest that stable, scalable load-sharing across paths, based on end-to-end measurements, can be achieved on the same rapid time-scale as rate control, namely the time-scale of round-trip times.

323 citations


Proceedings ArticleDOI
28 Aug 2005
TL;DR: This paper describes in detail a new MAC protocol, called 2P, that is suited for long-distance mesh networks being designed/used for low-cost rural connectivity, and shows that 2P achieves significant performance improvement over 802.11 CSMA/CA in long- distance mesh networks.
Abstract: 802.11 has been used well beyond its original intended use of WLANs. Of particular interest to us in this paper is its use in long-distance mesh networks being designed/used for low-cost rural connectivity. We describe in detail a new MAC protocol, called 2P, that is suited for such networks in terms of efficiency. A significant challenge here is the implementation of this protocol on top of off-the-shelf 802.11 hardware, to preserve the cost benefits. We show how this can be achieved, by exploiting the flexibilities available within Prism2-based chipsets. We then present the dependence of 2P on the network topology, and show that it is indeed possible to design in practice, network topologies compatible with 2P. We describe experimental as well as simulation-based evaluations of 2P, and show that 2P achieves significant performance improvement (as much as 20 times more throughput) over 802.11 CSMA/CA in long-distance mesh networks.

277 citations


Proceedings ArticleDOI
13 Mar 2005
TL;DR: This study demonstrates that when practical MANET sizes are considered, robustness to mobility and the constant factors matter more than the asymptotic costs of location service protocols.
Abstract: Geographic routing protocols allow stateless routing in mobile ad hoc networks (MANETs) by taking advantage of the location information of mobile nodes and thus are highly scalable. A central challenge in geographic routing protocols is the design of scalable distributed location services that track mobile node locations. A number of location services have been proposed, but little is known about the relative performance of these location services. In this paper, we perform a detailed performance comparison of three rendezvous-based location services that cover a range of design choices: a quorum-based protocol (XYLS) which disseminates each node's location to O(/spl radic/N) nodes, a hierarchical protocol (GLS) which disseminates each node's location to O(logN) nodes, and a geographic hashing based protocol (GHLS) which disseminates each node's location to O(1) nodes. We present a quantitative model of protocol overheads for predicting the performance tradeoffs of the protocols for static networks. We then analyze the performance impact of mobility on these location services. Finally, we compare the performance of routing protocols equipped with the three location services with two topology-based routing protocols, AODV and DSR, for a wide range of network sizes. Our study demonstrates that when practical MANET sizes are considered, robustness to mobility and the constant factors matter more than the asymptotic costs of location service protocols. In particular, while GLS scales better asymptotically, GHLS is far simpler, transmits fewer control packets, and delivers more data packets than GLS when used with geographic routing in MANETs of sizes considered practical today and in the near future. Similarly, although XYLS scales worse asymptotically than GLS, it transmits fewer control packets and delivers more data packets than GLS in large mobile networks.

Journal ArticleDOI
TL;DR: 18 reasons why short-hop routing is not as beneficial as it seems to be are listed and experimental evidence is provided to support this claim.
Abstract: For multihop wireless networks, a fundamental question is whether it is advantageous to route over many short hops (short-hop routing) or over a smaller number of longer hops (long-hop routing). Short-hop routing has gained a lot of support, and its proponents mainly produce two arguments: reduced energy consumption and higher signal-to-interference ratios. Both arguments stem from a simplified analysis based on crude channel models that neglects delay, end-to-end reliability, bias power consumption, the impact of channel coding, mobility, and routing overhead. In this article we shed more light on these issues by listing 18 reasons why short-hop routing is not as beneficial as it seems to be. We also provide experimental evidence to support this claim. The conclusion is that for many networks, long-hop routing is in every aspect a very competitive strategy.

Journal ArticleDOI
01 Jan 2005
TL;DR: Simulation studies using the proposed extensible on-demand power management framework with the Dynamic Source Routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on–off traffic loads, with comparable throughput and latency.
Abstract: Battery power is an important resource in ad hoc networks. It has been observed that in ad hoc networks, energy consumption does not reflect the communication activities in the network. Many existing energy conservation protocols based on electing a routing backbone for global connectivity are oblivious to traffic characteristics. In this paper, we propose an extensible on-demand power management framework for ad hoc networks that adapts to traffic load. Nodes maintain soft-state timers that determine power management transitions. By monitoring routing control messages and data transmission, these timers are set and refreshed on-demand. Nodes that are not involved in data delivery may go to sleep as supported by the MAC protocol. This soft state is aggregated across multiple flows and its maintenance requires no additional out-of-band messages. We implement a prototype of our framework in the ns-2 simulator that uses the IEEE 802.11 MAC protocol. Simulation studies using our scheme with the Dynamic Source Routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on–off traffic loads, with comparable throughput and latency. Preliminary results also show that it outperforms existing routing backbone election approaches.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: A query routing protocol that allows low bandwidth consumption during query forwarding using a low cost mechanism to create and maintain information about nearby objects and a novel data structure called an exponentially decaying bloom filter (EDBF) that encodes such probabilistic routing tables in a highly compressed manner.
Abstract: Searching for content in peer-to-peer networks is an interesting and challenging problem. Queries in Gnutella-like unstructured systems that use flooding or random walk to search must visit O(n) nodes in a network of size n, thus consuming significant amounts of bandwidth. In this paper, we propose a query routing protocol that allows low bandwidth consumption during query forwarding using a low cost mechanism to create and maintain information about nearby objects. To achieve this, our protocol maintains a lightweight probabilistic routing table at each node that suggests the location of each object in the network. Following the corresponding routing table entries, a query can reach the destination in a small number of hops with high probability. However, maintaining routing tables in a large and highly dynamic network requires non-traditional mechanisms. We design a novel data structure called an exponentially decaying bloom filter (EDBF) that encodes such probabilistic routing tables in a highly compressed manner, and allows for efficient aggregation and propagation. The search primitives provided by our system can be used to search for single keys or multiple keywords with equal ease. Analytical modeling of our design predicts significant improvements in search efficiency, verified through extensive simulations in which we observed an order of magnitude reduction in query path length over previous proposals.

Patent
26 Aug 2005
TL;DR: In this paper, neighbor messages are used to allow routing nodes to discover one another and configure a hierarchical routing configuration in a hierarchical wireless mesh network, and a neighbor and adjacency protocol that provides automatic mesh configuration and loop-free mesh topologies.
Abstract: Methods, apparatuses and systems directed to routing configuration in a hierarchical wireless mesh network. In one implementation, the present invention uses neighbor messages to allow routing nodes to discover one another and configure a hierarchical routing configuration. In one implementation, the present invention provides a neighbor and adjacency protocol that provides for automatic mesh configuration and loop-free mesh topologies.

Proceedings ArticleDOI
13 Oct 2005
TL;DR: This work first fixes the routing, then presents scheduling algorithms which provide per flow QoS guarantees to real and interactive data applications while utilizing the network resources efficiently.
Abstract: We consider the problem of routing and centralized scheduling for IEEE 802.16 mesh networks. We first fix the routing, which reduces the network to a tree. We then present scheduling algorithms which provide per flow QoS (Quality of Service) guarantees to real and interactive data applications while utilizing the network resources efficiently. Our algorithms are also scalable: they do not require per flow processing and queueing and the computational requirements are minimal. We also discuss admission control policies which ensure that sufficient resources are available. We have verified our algorithms via extensive simulations.

Journal ArticleDOI
TL;DR: An on-demand delay-constrained unicast routing protocol to provide efficient QoS routing support in wireless ad hoc networks is devised and a review of previous work addressing the issue of route selection subject to QoS constraint(s) is presented.
Abstract: QoS routing plays an important role for providing QoS in wireless ad hoc networks. The goals of QoS routing are in general twofold: selecting routes with satisfied QoS requirement(s), and achieving global efficiency in resource utilization. In this article we first discuss some key design considerations in providing QoS routing support, and present a review of previous work addressing the issue of route selection subject to QoS constraint(s). We then devise an on-demand delay-constrained unicast routing protocol. Various strategies are employed in the protocol to reduce the communication overhead in acquiring cost-effective delay-constrained routes. Simulation results are used to verify our expectation of the high performance of the devised protocol. Finally, we discuss some possible future directions for providing efficient QoS routing support in wireless ad hoc networks.

Journal ArticleDOI
TL;DR: The HOLSR mechanism is derived from the O LSR protocol; however, unlike OLSR, the HOLSR protocol takes advantage of different mobile node capabilities to reduce the routing control overhead in large heterogeneous ad hoc networks, thus improving the performance of the routing mechanism.
Abstract: This article reviews the hierarchical optimized link state routing (HOLSR) mechanism for heterogeneous mobile ad hoc networks. In this work a heterogeneous mobile ad hoc network is defined as a network of mobile nodes that are characterized by different communications capabilities, such as multiple radio interfaces. The article focuses on proposing the HOLSR protocol. The HOLSR mechanism is derived from the OLSR protocol; however, unlike OLSR, the HOLSR protocol takes advantage of different mobile node capabilities to reduce the routing control overhead in large heterogeneous ad hoc networks, thus improving the performance of the routing mechanism.

Proceedings ArticleDOI
05 Dec 2005
TL;DR: Simulation results show that overall end-to-end throughput is greatly improved when using the proposed algorithm for concurrency, and that the algorithm performs best when the routing tree is adjusted.
Abstract: The WiMax mesh networks based on IEEE 802.16 standard (2004) was developed with the goal of providing for easy, fast and cost-effective network set-up, deployment and extension. The standard defines scheduling scheme in mesh mode, but don't specify spatial resource management in the protocol. In this paper, we design a general algorithm for SSs to achieve concurrent transmission in both uplink and downlink streams. Constructing and adjustment of routing tree is also given in the paper. Simulation results show that overall end-to-end throughput is greatly improved when using our proposed algorithm for concurrency, and that the algorithm performs best when the routing tree is adjusted.

Journal ArticleDOI
TL;DR: A novel distributed routing protocol which guarantees security, anonymity and high reliability of the established route in a hostile environment, such as ad hoc wireless network, by encrypting routing packet header and abstaining from using unreliable intermediate node is proposed.

Proceedings ArticleDOI
01 Jan 2005
TL;DR: Simulation results show that the energy-saving performance of the minimum-energy routing protocols can be significantly improved when they are implemented together with the proposed C-MAC protocol and can be further enhanced when the initial path is selected using the cooperation characteristics of the network.
Abstract: Cooperative diversity techniques exploit the spatial characteristics of the network to create transmit-diversity, in which the same information can be forwarded through multiple paths towards a single destination or a set of destination nodes. In this paper, we study the integration of cooperative diversity into wireless routing protocols by developing distributed cooperative MAC (C-MAC) and routing protocols. The proposed protocols employ efficient relay selection-coordination and power allocation techniques to maximize the cooperation benefits in the network. Simulation results show that the energy-saving performance of the minimum-energy routing protocols can be significantly improved when they are implemented together with the proposed C-MAC protocol (%50). We also show that the performance of the C-MAC protocol can be further enhanced when the initial path is selected using the cooperation characteristics of the network (%11 more energy-savings compared to the previous case, i.e., C-MAC with minimum-energy routing)

Proceedings ArticleDOI
13 Mar 2005
TL;DR: Simulation results demonstrate that SAM successfully detects wormhole attacks and locates the malicious nodes in networks with cluster and uniform topologies and with different node transmission range.
Abstract: The application of multi-path techniques in wireless ad hoc networks is advantageous because multi-path routing provides means to combat the effect of unreliable wireless links and constantly changing network topology. The performance of multi-path routing under wormhole attack is studied in both cluster and uniform network topologies. Because multi-path routing is vulnerable to wormhole attacks, a scheme called statistical analysis of multi-path (SAM) is proposed to detect such attacks and to identify malicious nodes. As the name suggests, SAM detects wormhole attacks and identifies attackers by statistically analyzing the information collected by multi-path routing. Neither additional security services or systems nor security enhancement of routing protocols is needed in the proposed scheme. Simulation results demonstrate that SAM successfully detects wormhole attacks and locates the malicious nodes in networks with cluster and uniform topologies and with different node transmission range.

Proceedings ArticleDOI
04 Apr 2005
TL;DR: The COMMIT protocol is introduced, based on the VCG payment scheme, in conjunction with a novel game-theoretic technique to achieve truthfulness for the sender node and the inevitable economic inefficiency is small.
Abstract: We consider the problem of establishing a route and sending packets between a source/destination pair in ad hoc networks composed of rational selfish nodes, whose purpose is to maximize their own utility. In order to motivate nodes to follow the protocol specification, we use side payments that are made to the forwarding nodes. Our goal is to design a fully distributed algorithm such that: (i) a node is always better off participating in the protocol execution (individual rationality), (ii) a node is always better off behaving according to the protocol specification (truthfulness), (iii) messages are routed along the most energy-efficient path, and (iv) the message complexity is reasonably low. We introduce the COMMIT protocol for individually rational, truthful, and energy-efficient routing in ad-hoc networks. To the best of our knowledge, this is the first ad hoc routing protocol with these features. COMMIT is based on the VCG payment scheme, in conjunction with a novel game-theoretic technique to achieve truthfulness for the sender node. By means of simulation, we show that the inevitable economic inefficiency is small. As an aside, our work demonstrates the advantage of using a cross-layer approach to solving problems: leveraging the existence of an underlying topology control protocol, we are able to simplify the design and analysis of our routing protocol, and to reduce its message complexity. On the other hand, our investigation of the routing problem in presence of selfish nodes disclosed a new metric under which topology control protocols can be evaluated: the cost of cooperation.

Proceedings ArticleDOI
05 Dec 2005
TL;DR: Anchor Based Routing Protocol (ABRP) as mentioned in this paper is a scalable routing protocol for ad-hoc networks, which combines table based routing strategy with geographic routing strategy, and it is efficient and scale well to large network.
Abstract: Ad hoc networks, which do not rely on any infrastructure such as access points or base station, can be deployed rapidly and inexpensively even in situations with geographical or time constraints. So ad hoc networks have attractive applications in both military and disaster situations and also in commercial uses like sensor networks or conferencing. In ad hoc networks, each node acts both as a router and as a host. The topology of an ad hoc network may change dynamically, which makes it difficult to design an efficient routing protocol. Nowadays, more and more wireless devices are used, which can form large ad hoc networks. It is important to design scalable routing protocol for ad hoc networks. In this paper we present anchor based routing protocol (ABRP), a scalable routing protocol for ad hoc networks. It is a hybrid routing protocol, which combines table based routing strategy with geographic routing strategy. Simulation results shows that it is efficient and scale well to large network.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: It is proved that by ordering the updates of the routing tables on the routers, it is possible to avoid all transient loops during the convergence of ISIS or OSPF after a planned link failure, an unplanned failure of a protected link and after a link metric modification.
Abstract: When the topology of an IP network changes due to a link failure or a link metric modification, the routing tables of all the routers must be updated Each of those updates may cause transient loops In this paper, we prove that by ordering the updates of the routing tables on the routers, it is possible to avoid all transient loops during the convergence of ISIS or OSPF after a planned link failure, an unplanned failure of a protected link and after a link metric modification We then propose a protocol that allows the routers to order the update of their routing tables to avoid transient loops without requiring any complex computation

Patent
12 Aug 2005
TL;DR: In this article, the authors propose a distributed platform for querying the data collected by hosts or end-systems residing at the edges of a network to collect data about the traffic they transmit into and receive from the network.
Abstract: Hosts or end-systems residing at the edges of a network gather data about the traffic they transmit into and receive from the network. The network's routing protocol (typically a link-state protocol such as OSPF) is monitored and routing data or packets are used to recover the network's current status and topology. This data can be collected, fused, and maintained and a platform, preferably distributed, can be provided to query the data, thus enabling a variety of network management applications.

Journal ArticleDOI
TL;DR: The main contribution of this protocol is the introduction of a novel approach based on a low cost backbone provisioning within a wireless sensor network in order to turn off the non backbone nodes and save energy without compromising the connectivity of the network, and thereby extending the network lifetime.
Abstract: In this paper, we present a novel Energy-Aware Data-Centric Routing algorithm for wireless sensor networks, which we refer to as EAD. We discuss the algorithm and its implementation, and report on the performance results of several workloads using the network simulator ns-2. EAD represents an efficient energy-aware distributed protocol to build a rooted broadcast tree with many leaves, and facilitate the data-centric routing in wireless micro sensor networks. The idea is to turn off the radios of all leaf nodes and let the non-leaf nodes be in charge of data aggregation and relaying tasks. The main contribution of this protocol is the introduction of a novel approach based on a low cost backbone provisioning within a wireless sensor network in order to turn off the non backbone nodes and save energy without compromising the connectivity of the network, and thereby extending the network lifetime. EAD makes no assumption on the network topology, and it is based on a residual power. We present an extensive simulation experiments to evaluate the performance of our EAD forwarding-to-parent routing scheme over a tree created by a single EAD execution, and compare it with the routing scheme over a regular Ad hoc On-Demand Distance Vector (AODV) Protocol. Last but not least, we evaluate the performance of our proposed EAD algorithm and compare it to the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, a cluster-based, energy-aware routing protocol specifically designed for sensor networks. Our results indicate clearly that EAD outperforms AODV and LEACH in energy conservation, throughput, and network lifetime extension.

Proceedings ArticleDOI
13 Mar 2005
TL;DR: An integrated MAC/routing protocol, called MACRO, which exploits the capability of sensor devices to tune their transmission power is introduced and performance results show that the proposed protocol outperforms other solutions in terms of energy efficiency and boosts data aggregation.
Abstract: Sensor networks are characterized by limited battery supplies. Due to this feature, communication protocols specifically designed for these networks should be aimed at minimizing energy consumption. To this purpose, the sensor's capability of transmitting with different power levels can be exploited. With this in mind, in this paper an integrated MAC/routing protocol, called MACRO, which exploits the capability of sensor devices to tune their transmission power is introduced. The proposed protocol requires that each node only knows its own coordinates and the coordinates of the destination, but does not require any exchange of location information. In order to select the next relay node, a competition is triggered at each hop, so that the most energy efficient relay node is chosen. This is achieved through maximization of a newly introduced parameter, called weighted progress factor, which represents the progress towards the destination per unit of transmitted power. To this aim, an analytical framework which guarantees that MACRO performs the best choice is derived. MACRO performance is evaluated through ns-2 simulation and compared to other relevant routing schemes. Performance results show that the proposed protocol outperforms other solutions in terms of energy efficiency and boosts data aggregation.

Journal ArticleDOI
01 Sep 2005
TL;DR: Performance measurements of the OLSR (optimized link state routing) protocol routing, presented at the IETF MANET (mobile ad-hoc network) working group for ad-Hoc networks, are presented.
Abstract: Wireless ad hoc networks are autonomous, self-configurating and adaptive Thus, such networks are excellent candidates for military tactical networks, where their ability to be operational rapidly and without any centralized entity is essential As radio coverage is usually limited, multihop routing is often needed; this is achieved by an ad hoc routing protocol supporting nodes mobility In this paper, we present performance measurements of the Optimized Link State Routing (OLSR) routing protocol, having the status of IETF RFC The measurements are performed at CELAR site on a platform representative of military scenarios in urban areas This platform consists of ten routers, eight PDAs and laptops using a IEEE 80211b radio interface and implementing OLSR v7 Some nodes are mobile within vehicles The emphasis of the measurements is on the performance of the network (route repair, network convergence speed, user traffic performance) in presence of this mobility

Proceedings ArticleDOI
27 Jun 2005
TL;DR: The route change latency (RCL) after link failures, a critical performance metric in a non-static ad-hoc scenario, and its dependence on routing protocol parameter settings and implementation issues using OLSR are studied.
Abstract: A key element for MANET performance is the routing protocol. Surprisingly, little effort has been devoted up to now to analyzing the impact of routing protocol parameter settings on MANET performance. We define and study in detail the route change latency (RCL) after link failures, a critical performance metric in a non-static ad-hoc scenario, and its dependence on routing protocol parameter settings and implementation issues using OLSR. We experiment with a set of OLSR settings in a real network environment and derive its potential effect in a generic situation, showing that end-to-end connectivity can be enhanced using different parameter settings from the default ones.