scispace - formally typeset
Search or ask a question
Topic

Hazy Sighted Link State Routing Protocol

About: Hazy Sighted Link State Routing Protocol is a research topic. Over the lifetime, 6936 publications have been published within this topic receiving 169377 citations. The topic is also known as: HSLS.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a simple opportunistic adaptive routing protocol (SOAR) to explicitly support multiple simultaneous flows in wireless mesh networks and shows that SOAR significantly outperforms traditional routing and a seminal opportunistic routing protocol, ExOR, under a wide range of scenarios.
Abstract: Multihop wireless mesh networks are becoming a new attractive communication paradigm owing to their low cost and ease of deployment. Routing protocols are critical to the performance and reliability of wireless mesh networks. Traditional routing protocols send traffic along predetermined paths and face difficulties in coping with unreliable and unpredictable wireless medium. In this paper, we propose a simple opportunistic adaptive routing protocol (SOAR) to explicitly support multiple simultaneous flows in wireless mesh networks. SOAR incorporates the following four major components to achieve high throughput and fairness: 1) adaptive forwarding path selection to leverage path diversity while minimizing duplicate transmissions, 2) priority timer-based forwarding to let only the best forwarding node forward the packet, 3) local loss recovery to efficiently detect and retransmit lost packets, and 4) adaptive rate control to determine an appropriate sending rate according to the current network conditions. We implement SOAR in both NS-2 simulation and an 18-node wireless mesh testbed. Our extensive evaluation shows that SOAR significantly outperforms traditional routing and a seminal opportunistic routing protocol, ExOR, under a wide range of scenarios.

314 citations

01 Jan 2001
TL;DR: It was found, that enforcing “jitter” on the interval between the periodic exchange of control messages in OLSR and piggybacking said control messages into a single packet, significantly reduced the number of messages lost due to collisions.
Abstract: In this paper, we describe the Optimized Link State Routing Protocol (OLSR) [1] for Mobile Ad-hoc NETworks (MANETs) and the evaluation of this protocol through experiments and simulations. In particular, we emphasize the practical tests and intensive simulations, which have been used in guiding and evaluating the design of the protocol, and which have been a key to identifying both problems and solutions. OLSR is a proactive link-state routing protocol, employing periodic message exchange for updating topological information in each node in the network. I.e. topological information is flooded to all nodes in the network. Conceptually, OLSR contains three elements: Mechanisms for neighbor sensing based on periodic exchange of HELLO messages within a node’s neighborhood. Generic mechanisms for efficient flooding of control traffic into the network employing the concept of multipoint relays (MPRs) [5] for a significant reduction of duplicate retransmissions during the flooding process. And a specification of a set of control-messages providing each node with sufficient topological information to be able to compute an optimal route to each destination in the network using any shortest-path algorithm. Experimental work, running a test-network of laptops with IEEE 802.11 wireless cards, revealed interesting properties. While the protocol, as originally specified, works quite well, it was found, that enforcing “jitter” on the interval between the periodic exchange of control messages in OLSR and piggybacking said control messages into a single packet, significantly reduced the number of messages lost due to collisions. It was also observed, that under certain conditions a “naive” neighbor sensing mechanism was insufficient: a bad link between two nodes (e.g. when two nodes are on the edge of radio range) might on occasion transmit a HELLO message in both directions (hence enabling the link for routing), while not being able to sustain continuous traffic. This would result in “route-flapping” and temporary loss of connectivity. With the experimental results as basis, we have been deploying simulations to reveal the impact of the various algorithmic improvements, described above.

305 citations

Proceedings ArticleDOI
07 Jan 2012
TL;DR: The various routing protocol are classified and described and the growing interest in WSN and the continual emergence of new architectural techniques inspired surveying the characteristics, applications and communication protocols for such a technical area.
Abstract: Extensive usage of wireless sensor network (WSN) is the reason of development of many routing protocols. Recent advances in WSN now witness the increased interest in the potential use in applications like Military, Environmental, Health (Scanning), Space Exploration, Vehicular Movement, Mechanical stress levels on attached objects, disaster management, combat field reconnaissance etc. Sensors are expected to be remotely deployed in unattended environments. Routing as one key technologies of wireless sensor network has now become a hot research because the applications of WSN is everywhere, it is impossible that there is a routing protocol suitable for all applications. In this paper, the various routing protocol are classified and described. The growing interest in WSN and the continual emergence of new architectural techniques inspired surveying the characteristics, applications and communication protocols for such a technical area.

302 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: Simulation studies using the proposed extensible on-demand power management framework with the dynamic source routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on-off traffic loads, with comparable throughput and latency.
Abstract: Battery power is an important resource in ad hoc networks. It has been observed that in ad hoc networks, energy consumption does not reflect the communication activities in the network. Many existing energy conservation protocols based on electing a routing backbone for global connectivity are oblivious to traffic characteristics. In this paper, we propose an extensible on-demand power management framework for ad hoc networks that adapts to traffic load. Nodes maintain soft-state timers that determine power management transitions. By monitoring routing control messages and data transmission, these timers are set and refreshed on-demand. Nodes that are not involved in data delivery may go to sleep as supported by the MAC protocol. This soft state is aggregated across multiple flows and its maintenance requires no additional out-of-band messages. We implement a prototype of our framework in the ns-2 simulator that uses the IEEE 802.11 MAC protocol. Simulation studies using our scheme with the dynamic source routing protocol show a reduction in energy consumption near 50% when compared to a network without power management under both long-lived CBR traffic and on-off traffic loads, with comparable throughput and latency. Preliminary results also show that it outperforms existing routing backbone election approaches.

299 citations

Proceedings ArticleDOI
09 Jul 2003
TL;DR: The results reveals that in comparison with general single-path routing protocol, multipath routing mechanism creates more overheads but provides better performance in congestion and capacity provided that the route length is within a certain upper bound which is derivable.
Abstract: Research on multipath routing protocols to provide improved throughput and route resilience as compared with single-path routing has been explored in details in the context of wired networks. However, multipath routing mechanism has not been explored thoroughly in the domain of ad hoc networks. In this paper, we analyze and compare reactive single-path and multipath routing with load balance mechanisms in ad hoc networks, in terms of overhead, traffic distribution and connection throughput. The results reveals that in comparison with general single-path routing protocol, multipath routing mechanism creates more overheads but provides better performance in congestion and capacity provided that the route length is within a certain upper bound which is derivable. The analytical results are further confirmed by simulation.

287 citations


Network Information
Related Topics (5)
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Network packet
159.7K papers, 2.2M citations
92% related
Wireless sensor network
142K papers, 2.4M citations
92% related
Wireless network
122.5K papers, 2.1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202210
20211
20193
201822
2017264