scispace - formally typeset
Search or ask a question
Topic

Hazy Sighted Link State Routing Protocol

About: Hazy Sighted Link State Routing Protocol is a research topic. Over the lifetime, 6936 publications have been published within this topic receiving 169377 citations. The topic is also known as: HSLS.


Papers
More filters
Proceedings ArticleDOI
05 Dec 1999
TL;DR: A new protocol, the flow oriented routing protocol (FORP), for routing real-time IPv6 flows in highly mobile ad hoc wireless networks with a new concept called "multi-hop handoff" to anticipate topological changes and perform rerouting, thus limiting the disruption of a flow due to the changing topology.
Abstract: In an ad hoc wireless network, mobile hosts are acting as routers and the network topology is constantly changing due to node mobility. The disruptions can cause serious degradation for real-time session. This paper describes a new protocol, the flow oriented routing protocol (FORP), for routing real-time IPv6 flows (e.g., voice and data) in highly mobile ad hoc wireless networks. A new concept called "multi-hop handoff" is introduced to anticipate topological changes and perform rerouting, thus limiting the disruption of a flow due to the changing topology. The performance of the proposed scheme is compared to other routing approaches.

212 citations

Patent
09 Nov 2000
TL;DR: In this paper, the authors propose to selectively reduce the quantity of control links between head nodes to transmit the LSA and other routing control packets with reduced protocol overhead traffic, thereby permitting the network to utilize link-state based protocols effectively (eg, with minimal impact on network throughput) while expanding to larger scales.
Abstract: Link-State Advertisement (LSA) and other routing control packets are transmitted within a wireless communication system or network via selective enablement of control links for transference of the packets between network nodes Specifically, an exemplary wireless network includes a plurality of nodes arranged into clusters with each cluster having cluster member nodes and a designated cluster head node The present invention selectively reduces the quantity of control links between head nodes to transmit the LSA and other routing control packets with reduced protocol overhead traffic, thereby permitting the network to utilize link-state based protocols effectively (eg, with minimal impact on network throughput) while expanding to larger scales

210 citations

Proceedings ArticleDOI
11 Oct 1998
TL;DR: The simulation results show that the bandwidth routing algorithm is very useful in extending the ATM virtual circuit service to the wireless network and enables an efficient call admission control.
Abstract: The emergence of nomadic applications have generated a lot of interest in wireless network infrastructures which support multimedia services. We propose a bandwidth routing algorithm for multimedia support in a multihop wireless network. This network can be interconnected to wired networks (e.g. ATM or the Internet) or stand alone. Our bandwidth routing includes bandwidth calculation and reservation schemes. Under such a routing algorithm, we can derive a route to satisfy the bandwidth requirement for the QoS constraint. At a source node, the bandwidth information can be used to decide to accept a new call or not immediately. This is specially important to carry out a fast handoff when interconnecting to an ATM backbone infrastructure. It enables an efficient call admission control. The simulation results show that the bandwidth routing algorithm is very useful in extending the ATM virtual circuit service to the wireless network. Different types of QoS traffic can be integrated in such a dynamic radio network with high performance.

206 citations

Journal ArticleDOI
TL;DR: Routing protocols used in wired network cannot be used for mobile ad-hoc networks because of node mobility, so these protocols are divided into two classes: table driven and demand based.
Abstract: Mobile ad hoc networks(MANET) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self organize into arbitrary and temporary ad-hoc network topologies, allowing people and devices to seamlessly internet work in areas with no preexisting communication infrastructure e.g., disaster recovery environments. An ad-hoc network is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad-hoc paradigm. Recently the introduction of new technologies such as Bluetooth, IEEE 802.11 and hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent revolutions have been generating a renewed and growing interest in the research and development of MANET. To facilitate communication within the network a routing protocol is used to discover routes between nodes. The goal of the routing protocol is to have an efficient route establishment between a pair of nodes, so that messages can be delivered in a timely manner. Bandwidth and power constraints are the important factors to be considered in current wireless network because multi-hop ad-hoc wireless relies on each node in the network to act as a router and packet forwarder. This dependency places bandwidth, power computation demands on mobile host to be taken into account while choosing the protocol. Routing protocols used in wired network cannot be used for mobile ad-hoc networks because of node mobility. The ad-hoc routing protocols are divided into two classes: table driven and demand based. This paper reviews and discusses routing protocol belonging to each category.

205 citations

01 Jan 2003
TL;DR: In this paper, the authors propose a location-aware routing protocol that is robust and works without knowledge of the existence of neighboring nodes (state-free), and compare their work against established routing protocols to demonstrate the efficacy of their solution when nodes are mobile or periodically sleep to conserve energy.
Abstract: Wireless Sensor Networks (WSNs) are being designed to solve a gamut of interesting real-world problems. Limitations on available energy and bandwidth, message loss, high rates of node failure, and communication restrictions pose challenging requirements for these systems. Beyond these inherent limitations, both the possibility of node mobility and energy conserving protocols that power down nodes introduce additional complexity to routing protocols that depend on up to date routing or neighborhood tables. Such state-based protocols suffer excessive delay or message loss, as system dynamics require expensive upkeep of these tables. Utilizing characteristics of high node density and location awareness, we introduce IGF, a location-aware routing protocol that is robust and works without knowledge of the existence of neighboring nodes (state-free). We compare our work against established routing protocols to demonstrate the efficacy of our solution when nodes are mobile or periodically sleep to conserve energy. We show that IGF far outperforms these protocols, in some cases delivering close to 100% of the packets transmitted while alternate solutions fail to even find a path between a source and destination. Specifically, we show that our protocol demonstrates a vast improvement over prior work using metrics of delivery ratio, control overhead, and end-to-end delay.

204 citations


Network Information
Related Topics (5)
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
93% related
Wireless ad hoc network
49K papers, 1.1M citations
93% related
Network packet
159.7K papers, 2.2M citations
92% related
Wireless sensor network
142K papers, 2.4M citations
92% related
Wireless network
122.5K papers, 2.1M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202210
20211
20193
201822
2017264