scispace - formally typeset
Search or ask a question
Topic

HDAC10

About: HDAC10 is a research topic. Over the lifetime, 844 publications have been published within this topic receiving 71919 citations. The topic is also known as: HD10 & histone deacetylase 10.


Papers
More filters
Journal ArticleDOI
23 May 2002-Nature
TL;DR: The results show that HDAC6 is the tubulin deacetylase, and provide evidence that reversible acetylation regulates important biological processes beyond histone metabolism and gene transcription, including microtubule-dependent cell motility.
Abstract: Reversible acetylation of α-tubulin has been implicated in regulating microtubule stability and function1. The distribution of acetylated α-tubulin is tightly controlled and stereotypic. Acetylated α-tubulin is most abundant in stable microtubules but is absent from dynamic cellular structures such as neuronal growth cones and the leading edges of fibroblasts1,2. However, the enzymes responsible for regulating tubulin acetylation and deacetylation are not known. Here we report that a member of the histone deacetylase family, HDAC6, functions as a tubulin deacetylase. HDAC6 is localized exclusively in the cytoplasm, where it associates with microtubules and localizes with the microtubule motor complex containing p150glued (ref. 3). In vivo, the overexpression of HDAC6 leads to a global deacetylation of α-tubulin, whereas a decrease in HDAC6 increases α-tubulin acetylation. In vitro, purified HDAC6 potently deacetylates α-tubulin in assembled microtubules. Furthermore, overexpression of HDAC6 promotes chemotactic cell movement, supporting the idea that HDAC6-mediated deacetylation regulates microtubule-dependent cell motility. Our results show that HDAC6 is the tubulin deacetylase, and provide evidence that reversible acetylation regulates important biological processes beyond histone metabolism and gene transcription.

2,096 citations

Journal ArticleDOI
TL;DR: Together, histone acetyltransferases and histone deacetylases determine the acetylation status of histones, and inhibitors of HDACs have been found to cause growth arrest, differentiation and/or apoptosis of many tumours cells by altering the transcription of a small number of genes.
Abstract: Together, histone acetyltransferases and histone deacetylases (HDACs) determine the acetylation status of histones. This acetylation affects the regulation of gene expression, and inhibitors of HDACs have been found to cause growth arrest, differentiation and/or apoptosis of many tumours cells by altering the transcription of a small number of genes. HDAC inhibitors are proving to be an exciting therapeutic approach to cancer, but how do they exert this effect?

1,903 citations

Journal ArticleDOI
TL;DR: Results clearly indicate that TSA is a potent and specific inhibitor of the histone deacetylase and that the in vivo effect of TSA on cell proliferation and differentiation can be attributed to the inhibition of the enzyme.

1,897 citations

Journal ArticleDOI
19 Apr 1996-Science
TL;DR: A role for histone deacetylase as a key regulator of eukaryotic transcription is supported by the predicted protein, which is very similar to the yeast transcriptional regulator Rpd3p.
Abstract: Trapoxin is a microbially derived cyclotetrapeptide that inhibits histone deacetylation in vivo and causes mammalian cells to arrest in the cell cycle. A trapoxin affinity matrix was used to isolate two nuclear proteins that copurified with histone deacetylase activity. Both proteins were identified by peptide microsequencing, and a complementary DNA encoding the histone deacetylase catalytic subunit (HD1) was cloned from a human Jurkat T cell library. As the predicted protein is very similar to the yeast transcriptional regulator Rpd3p, these results support a role for histone deacetylase as a key regulator of eukaryotic transcription.

1,756 citations

Journal ArticleDOI
09 Sep 1999-Nature
TL;DR: The structure of the histone deacetylase catalytic core is described, as revealed by the crystal structure of a homologue from the hyperthermophilic bacterium Aquifex aeolicus, and it is established that the residues that make up the active site and contact the inhibitors are conserved across the HDAC family.
Abstract: Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression HDACs are involved in cell-cycle progression and differentiation, and their deregulation is associated with several cancers HDAC inhibitors, such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), have anti-tumour effects, as they can inhibit cell growth, induce terminal differentiation and prevent the formation of tumours in mice models, and they are effective in the treatment of promyelocytic leukemia Here we describe the structure of the histone deacetylase catalytic core, as revealed by the crystal structure of a homologue from the hyperthermophilic bacterium Aquifex aeolicus, that shares 352% identity with human HDAC1 over 375 residues, deacetylates histones in vitro and is inhibited by TSA and SAHA The deacetylase, deacetylase-TSA and deacetylase-SAHA structures reveal an active site consisting of a tubular pocket, a zinc-binding site and two Asp-His charge-relay systems, and establish the mechanism of HDAC inhibition The residues that make up the active site and contact the inhibitors are conserved across the HDAC family These structures also suggest a mechanism for the deacetylation reaction and provide a framework for the further development of HDAC inhibitors as antitumour agents

1,674 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
86% related
Transcription factor
82.8K papers, 5.4M citations
84% related
Receptor
159.3K papers, 8.2M citations
84% related
Regulation of gene expression
85.4K papers, 5.8M citations
83% related
Gene expression
113.3K papers, 5.5M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202322
202214
20217
20206
20195
20185