scispace - formally typeset
Search or ask a question
Topic

Heat-affected zone

About: Heat-affected zone is a research topic. Over the lifetime, 18787 publications have been published within this topic receiving 231744 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of welding sequence on welding deformations in pipe-pipe joints of AISI stainless-steel type was investigated using three-dimensional thermo-mechanical analysis.

114 citations

Journal ArticleDOI
TL;DR: A comparative study on the influence of gas tungsten arc welding (GTAW) and carbon dioxide laser beam welding (LBW) processes on the size and microstructure of fusion zone FZ then, on the mechanical and corrosion properties of duplex stainless steel DSS grade 2205 plates of 6.4mm thickness was investigated as mentioned in this paper.
Abstract: A comparative study on the influence of gas tungsten arc welding (GTAW) and carbon dioxide laser beam welding (LBW) processes on the size and microstructure of fusion zone FZ then, on the mechanical and corrosion properties of duplex stainless steel DSS grade 2205 plates of 6.4 mm thickness was investigated. Autogenous butt welded joints were made using both GTAW and LBW. The GTA welded joint was made using well established welding parameters (i.e., current ampere of 110 A, voltage of 12 V, welding speed of 0.15 m/min and argon shielding rate of 15 l/min). While optimum LBW parameters were used (i.e., welding speed of 0.5 m/min, defocusing distance of 0.0 mm, argon shielding flow rate of 20 l/min and maximum output laser power of 8 kW). The results achieved in this investigation disclose that welding process play an important role in obtaining satisfactory weld properties. In comparison with GTAW, LBW has produced welded joint with a significant decrease in FZ size and acceptable weld profile. The ferrite–austenite balance of both weld metal WM and heat affected zone (HAZ) are influenced by heat input which is a function of welding process. In comparison with LBW, GTAW has resulted in ferrite–austenite balance close to that of base metal BM due to higher heat input in GTAW. However, properties of LB welded joint, particularly corrosion resistance are much better than that of GTA welded joint. The measured corrosion rates for LBW and GTAW joints are 0.05334 mm/year and 0.2456 mm/year, respectively. This is related to the relatively small size of both WM and HAZ produced in the case of LBW. In other words, properties of welded joints are remarkably influenced by FZ size rather than the produced austenite–ferrite balance.

114 citations

Journal ArticleDOI
TL;DR: In this article, the influence of adding helium, hydrogen and nitrogen to the argon shielding gas is investigated and it is found that adding any of the gases increases the heat flow to and the current density at the anode.
Abstract: Tungsten?inert-gas welding arcs are modelled using a two-dimensional axisymmetric computational code. Both electrodes (the tungsten cathode and the metal anode workpiece) and the arc plasma are included self-consistently in the computational domain. The influence of adding helium, hydrogen and nitrogen to the argon shielding gas is investigated. It is found that addition of any of the gases increases the heat flow to and the current density at the anode. The shear stress and the arc pressure at the anode surface are increased by adding hydrogen or nitrogen or up to about 50?mol% helium, but decrease when more helium is added. It is predicted that the effect of adding any of the gases is to increase the depth of the weld pool, in agreement with the experimental evidence. The results are explained by referring to the thermodynamic and transport properties of the gas mixtures.

114 citations

Journal ArticleDOI
TL;DR: Different forms of laser beam welding including single beam laser welding, dual-beam laser welding and laser arc hybrid fusion-brazing welding are reviewed in this paper, where the main problems are how to control the thickness of the intermetallic compound layer and reduce or avoid the generation of pores, cracks, and thermal stresses which severely limit the mechanical properties of welded joints.
Abstract: Joining aluminum to steel can lighten the weight of components in the automobile and other industries, which can reduce fuel consumption and harmful gas emissions to protect the environment. However, the differences of thermal, physical, and chemical properties between aluminum and steel bring a series of problems in laser welding. The main problems are how to control the thickness of the intermetallic compound layer and reduce or avoid the generation of pores, cracks, and thermal stresses which severely limit the mechanical properties of welded joints. Laser fusion-brazing technology utilizes the precise control of heat input with or without filler to partially melt the low melting temperature aluminum base material and promote wetting on the high melting temperature steel base material in order to achieve sound metallurgical by combining the advantages of fusion welding and brazing. Different forms of laser beam welding including single beam laser welding, dual-beam laser welding, and laser arc hybrid fusion-brazing welding are reviewed.

114 citations

Journal ArticleDOI
TL;DR: In this article, the microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated.

113 citations


Network Information
Related Topics (5)
Welding
206.5K papers, 1.1M citations
94% related
Alloy
171.8K papers, 1.7M citations
86% related
Microstructure
148.6K papers, 2.2M citations
85% related
Deformation (engineering)
41.5K papers, 899.7K citations
84% related
Machining
121.3K papers, 1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023229
2022548
2021270
2020365
2019389
2018463