scispace - formally typeset
Search or ask a question
Topic

Heat pipe

About: Heat pipe is a research topic. Over the lifetime, 30354 publications have been published within this topic receiving 243669 citations. The topic is also known as: heatpipe & heat-pipe.


Papers
More filters
Journal ArticleDOI
Zhoujian An1, Li Jia1, Yong Ding1, Chao Dang1, Xuejiao Li1 
TL;DR: In this paper, the effect of temperature on the capacity fade and aging of Li-ion power battery is investigated and the electrode structure, including electrode thickness, particle size and porosity, are analyzed.
Abstract: Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

176 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional model is presented to predict the overall heat transfer capability for a sintered wick structure, where the model considers the absence of bulk fluid at the top surface of the wick, heat conduction resistance, capillary limitation, and the onset of nucleate boiling.
Abstract: A two-dimensional model is presented to predict the overall heat transfer capability for a sintered wick structure. The model considers the absence of bulk fluid at the top surface of the wick, heat conduction resistance through the wick, capillary limitation, and the onset of nucleate boiling. The numerical results show that thin film evaporation occurring only at the top surface of a wick plays an important role in the enhancement of evaporating heat transfer and depends on the thin film evaporation, the particle size, the porosity, and the wick structure thickness. By decreasing the average particle radius, the evaporation heat transfer coefficient can be enhanced. Additionally, there exists an optimum characteristic thickness for maximum heat removal. The maximum superheat allowable for thin film evaporation at the top surface of a wick is presented to be a function of the particle radius, wick porosity, wick structure thickness, and effective thermal conductivity. In order to verify the theoretical analysis, an experimental system was established, and a comparison with the theoretical prediction conducted. Results of the investigation will assist in optimizing the heat transfer performance of sintered porous media in heat pipes and better understanding of thin film evaporation.

171 citations

Journal ArticleDOI
TL;DR: The aim of this research is to review the advancement in design complexities of different industrial heat transfer devices incorporating metal SLM fabrication, and presents the opportunities and challenges related to the application of SLM technology in connection to novel HXs and HSs, as well as heat pipes (HPs).
Abstract: This paper reviews advanced heat transfer devices utilizing advanced manufacturing technologies, including well-established thermal management applications. Several factors have recently contributed to developing novel heat transfer devices. One of the potential technologies revolutionizing the field of energy conversion is additive manufacturing (AM), colloquially known as three-dimensional (3D) printing. This technology permits engineers to develop a product with a high level of freeform features both internally and externally within a complex 3D geometry. Among different AM approaches, selective laser melting (SLM) is a well-used technique for developing products with a lower cost-to-complexity ratio and quicker time production compared to other manufacturing processes. The integration of SLM technology into heat exchangers (HXs) and heat sinks (HSs) has a strong potential, especially to fabricate customized and complex freeform shapes. The aim of this research is to review the advancement in design complexities of different industrial heat transfer devices incorporating metal SLM fabrication. The review is not meant to put a ceiling on the AM process, but to enable engineers to have an overview of the capabilities of SLM technology in the field of thermal management applications. This review presents the opportunities and challenges related to the application of SLM technology in connection to novel HXs and HSs, as well as heat pipes (HPs). The latter are passive heat transfer devices utilized in many thermal control applications, especially related to electronics cooling and energy applications.

169 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the thermal performance of flat-shaped and disk-shaped heat pipes using nanofluids and found that the nanoparticles presence within the working fluid results in a decrease in the thermal resistance and an increase in the maximum heat load capacity.

169 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
91% related
Thermal conductivity
72.4K papers, 1.4M citations
84% related
Reynolds number
68.4K papers, 1.6M citations
83% related
Laminar flow
56K papers, 1.2M citations
81% related
Combustion
172.3K papers, 1.9M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023343
2022511
2021619
2020986
20191,301
20181,498