scispace - formally typeset
Search or ask a question
Topic

Heat transfer

About: Heat transfer is a research topic. Over the lifetime, 181795 publications have been published within this topic receiving 2923586 citations. The topic is also known as: heat exchange.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors defined a theoretical model in order to derive the specific heat loss per cycle from temperature measurements performed during the fatigue test, which was applied to analyze the fatigue strength of smooth and notched specimens made of AISI 304 L stainless steel.

290 citations

Journal ArticleDOI
TL;DR: In this article, a closed loop spray cooling test setup is established for the cooling of high heat flux heat sources, where eight miniature nozzles in a multi-nozzle plate are used to generate a spray array targeting at a 1 × 2 cm2 cooling surface.

290 citations

Journal ArticleDOI
01 Jan 2007
TL;DR: In this paper, a two-dimensional numerical model of spiral counterflow heat recirculating combustors was developed including the effects of temperature-dependent gas and solid properties, viscous flow, surface-to-surface radiative heat transfer, heat conduction within the solid structure, one-step chemical reaction and heat loss from the combustor to its surroundings.
Abstract: A two-dimensional numerical model of spiral counterflow heat recirculating combustors was developed including the effects of temperature-dependent gas and solid properties, viscous flow, surface-to-surface radiative heat transfer, heat conduction within the solid structure, one-step chemical reaction and heat loss from the combustor to its surroundings. A simplified model of heat loss in the 3rd dimension was implemented and found to provide satisfactory representation of such losses at greatly reduced computational cost compared to fully three-dimensional models. The model predicts broad reaction zones with structure decidedly different from conventional premixed flames. Extinction limits were determined over a wide range of Reynolds numbers (2 500, modeling of turbulent flow and transport was required to obtain such agreement. Heat conduction along the heat exchanger wall has a major impact extinction limits; the wall thermal conductivity providing the broadest limits is actually less than that of air. Radiative heat transfer between walls was found to have an effect similar to that of heat conduction along the wall. In addition to weak-burning extinction limits, strong-burning limits in which the reaction zone moves out of the combustor center toward the inlet were also predicted by the numerical model, in agreement with experiments. It is concluded that several physical processes including radiative transfer, turbulence and wall heat conduction strongly affect the performance of heat-recirculating combustors, but the relative importance of such effects is strongly dependent on Re.

289 citations

Journal ArticleDOI
TL;DR: In this article, a novel architecture of 3D graphene growth on porous Al2O3 ceramics is proposed for thermal management using ambient pressure chemical vapor deposition (CVD) for thermal conduction and electronic applications.
Abstract: A novel architecture of 3D graphene growth on porous Al2O3 ceramics is proposed for thermal management using ambient pressure chemical vapor deposition. The formation mechanism of graphene is attributed to the carbothermic reduction occurring at the Al2O3 surface to initialize the nucleation and growth of graphene. The graphene films are coated on insulating anodic aluminum oxide (AAO) templates and porous Al2O3 ceramic substrates. The graphene coated AAO possesses one-dimensional isolated graphene tubes, which can act as the media for directional thermal transport. The graphene/Al2O3 composite (G-Al2O3) contains an interconnected macroporous graphene framework with an extremely low sheet electrical resistance down to 0.11 Ω sq−1 and thermal conductivity with 8.28 W m−1 K−1. The G-Al2O3 provides enormous conductive pathways for electronic and heat transfer, suitable for application as heat sinks. Such a porous composite is also attractive as a highly thermally conductive reservoir to hold phase change materials (stearic acid) for thermal energy storage. This work displays the great potential of CVD direct growth of graphene on dielectric porous substrates for thermal conduction and electronic applications.

289 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
91% related
Laminar flow
56K papers, 1.2M citations
91% related
Thermal conductivity
72.4K papers, 1.4M citations
89% related
Boundary layer
64.9K papers, 1.4M citations
86% related
Turbulence
112.1K papers, 2.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,737
202210,641
20217,860
20208,182
20198,826
20188,737