scispace - formally typeset
Search or ask a question
Topic

Heat transfer

About: Heat transfer is a research topic. Over the lifetime, 181795 publications have been published within this topic receiving 2923586 citations. The topic is also known as: heat exchange.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the convective heat transfer coefficients of several nanoparticle-in-liquid dispersions (nanofluids) have been measured under laminar flow in a horizontal tube heat exchanger.

709 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent developments in research on the heat transfer characteristics of nanofluids for the purpose of suggesting some possible reasons why the suspended nanoparticles can enhance the heat-transfer of conventional fluids and to provide a guide line or perspective for future research.
Abstract: Researches in heat transfer have been carried out over the previous several decades, leading to the development of the currently used heat transfer enhancement techniques. The use of additives is a technique applied to enhance the heat transfer performance of base fluids. Recently, as an innovative material, nanometer-sized particles have been used in suspension in conventional heat transfer fluids. The fluids with these solid-particle suspended in them are called ‘nanofluids’. The suspended metallic or nonmetallic nanoparticles change the transport properties and heat transfer characteristics of the base fluid. The aim of this review is to summarize recent developments in research on the heat transfer characteristics of nanofluids for the purpose of suggesting some possible reasons why the suspended nanoparticles can enhance the heat transfer of conventional fluids and to provide a guide line or perspective for future research.

709 citations

Journal ArticleDOI
TL;DR: In this paper, the Boltzmann transport equation is used to model the transport of electrons and electron lattice interactions during ultrafast laser heating of metals from a microscopic point of view.
Abstract: This work studies heat transfer mechanisms during ultrafast laser heating of metals from a microscopic point of view. The heating process is composed of three processes: the deposition of radiation energy on electrons, the transport of energy by electrons, and the heating of the material lattice through electron-lattice interactions. The Boltzmann transport equation is used to model the transport of electrons and electron lattice interactions. The scattering term of the Boltzmann equation is evaluated from quantum mechanical considerations, which shows the different contributions of the elastic and inelastic electron-lattice scattering processes on energy transport. By solving the Boltzmann equation, a hyperbolic two-step radiation heating model is rigorously established. It reveals the hyperbolic nature of energy flux carried by electrons and the nonequilibrium between electrons and the lattice during fast heating processes. Predictions from the current model agree with available experimental data during subpicosecond laser heating. 20 refs., 7 figs., 2 tabs.

709 citations

Journal ArticleDOI
TL;DR: Together, these results imply that the geometry, agglomeration state, and surface resistance of nanoparticles are the main variables controlling thermal conductivity enhancement in nanofluids.
Abstract: In recent years many experimentalists have reported an anomalously enhanced thermal conductivity in liquid suspensions of nanoparticles. Despite the importance of this effect for heat transfer applications, no agreement has emerged about the mechanism of this phenomenon, or even about the experimentally observed magnitude of the enhancement. To address these issues, this paper presents a combined experimental and theoretical study of heat conduction and particle agglomeration in nanofluids. On the experimental side, nanofluids of alumina particles in water and ethylene glycol are characterized using thermal conductivity measurements, viscosity measurements, dynamic light scattering, and other techniques. The results show that the particles are agglomerated, with an agglomeration state that evolves in time. The data also show that the thermal conductivity enhancement is within the range predicted by effective medium theory. On the theoretical side, a model is developed for heat conduction through a fluid containing nanoparticles and agglomerates of various geometries. The calculations show that elongated and dendritic structures are more efficient in enhancing the thermal conductivity than compact spherical structures of the same volume fraction, and that surface (Kapitza) resistance is the major factor resulting in the lower than effective medium conductivities measured in our experiments. Together, these results imply that the geometry, agglomeration state, and surface resistance of nanoparticles are the main variables controlling thermal conductivity enhancement in nanofluids.

700 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied and the significant effects of Brownian motion and thermophoresis have been included in the model of Nanofluide.

700 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
91% related
Laminar flow
56K papers, 1.2M citations
91% related
Thermal conductivity
72.4K papers, 1.4M citations
89% related
Boundary layer
64.9K papers, 1.4M citations
86% related
Turbulence
112.1K papers, 2.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,737
202210,641
20217,860
20208,182
20198,826
20188,737