scispace - formally typeset
Search or ask a question
Topic

Heat transfer

About: Heat transfer is a research topic. Over the lifetime, 181795 publications have been published within this topic receiving 2923586 citations. The topic is also known as: heat exchange.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors show that most of hot, optically thin accretion disk models which ignore advective cooling are not self-consistent, and they find new types of Optically thin disk solutions where cooling is dominated by radial advection of heat.
Abstract: We show that most of hot, optically thin accretion disk models which ignore advective cooling are not self-consistent. We have found new types of optically thin disk solutions where cooling is dominated by radial advection of heat. These new solutions are thermally and viscously stable.

639 citations

Journal ArticleDOI
TL;DR: The use of a latent heat storage system using Phase Change Materials (PCM) is an effective way of storing thermal energy (solar energy, off-peak electricity, industrial waste heat) and has the advantages of high storage density and the isothermal nature of the storage process as discussed by the authors.
Abstract: The use of a latent heat storage system using Phase Change Materials (PCM) is an effective way of storing thermal energy (solar energy, off-peak electricity, industrial waste heat) and has the advantages of high storage density and the isothermal nature of the storage process. It has been demonstrated that, for the development of a latent heat storage system, choice of the PCM plays an important role in addition to heat transfer mechanism. The information on the latent heat storage materials and systems is enormous and published widely in the literatures. In this paper, we make an effort to gather the information from the previous works on PCMs and latent heat storage systems. This review will help to find a suitable PCM for various purposes a suitable heat exchanger with ways to enhance the heat transfer, and it will also help to provide a variety of designs to store the heat using PCMs for different applications, i.e. space heating & cooling, solar cooking, greenhouses, solar water heating and waste heat recovery systems. Measurement techniques of thermophysical properties, studies on thermal cycles for long term stability, corrosion of the PCMs and enhancement of heat transfer in PCM are discussed. New PCM innovations are also included for the awareness of new applications. This paper contains a list of about 250 PCMs and more than 250 references.

638 citations

Journal ArticleDOI
TL;DR: The main concepts studied in this review are transport in porous media using mass diffusion and different convective flow models such as Darcy and the Brinkman models as mentioned in this paper, and energy transport in tissues is also analyzed.

637 citations

Journal ArticleDOI
TL;DR: In this article, the complex problem of void calculation in different regions of flow boiling is divided in two parts: the first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid.

637 citations

BookDOI
20 Jul 2017
TL;DR: Finite Difference Methods in Heat Transfer as mentioned in this paper presents a step-by-step delineation of finite difference methods for solving engineering problems governed by ordinary and partial differential equations, with emphasis on heat transfer applications.
Abstract: Finite Difference Methods in Heat Transfer presents a clear, step-by-step delineation of finite difference methods for solving engineering problems governed by ordinary and partial differential equations, with emphasis on heat transfer applications The finite difference techniques presented apply to the numerical solution of problems governed by similar differential equations encountered in many other fields Fundamental concepts are introduced in an easy-to-follow mannerRepresentative examples illustrate the application of a variety of powerful and widely used finite difference techniques The physical situations considered include the steady state and transient heat conduction, phase-change involving melting and solidification, steady and transient forced convection inside ducts, free convection over a flat plate, hyperbolic heat conduction, nonlinear diffusion, numerical grid generation techniques, and hybrid numerical-analytic solutions

636 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
91% related
Laminar flow
56K papers, 1.2M citations
91% related
Thermal conductivity
72.4K papers, 1.4M citations
89% related
Boundary layer
64.9K papers, 1.4M citations
86% related
Turbulence
112.1K papers, 2.7M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235,737
202210,641
20217,860
20208,182
20198,826
20188,737