scispace - formally typeset


Heck reaction

About: Heck reaction is a(n) research topic. Over the lifetime, 5670 publication(s) have been published within this topic receiving 165040 citation(s).

More filters
25 Aug 2004
Abstract: Preface.List of Contributors.1 Mechanistic Aspects of Metal-Catalyzed C,C- and C,X-Bond-Forming Reactions (Antonio M. Echavarren and Diego J. Cardenas).1.1 Mechanisms of Cross-Coupling Reactions.1.2 Formation of C,C-Bonds in the Palladium-Catalyzed alpha-Arylation of Carbonyl Compounds and Nitriles.1.3 Key Intermediates in the Formation of C-X (X = N, O, S) bonds in Metal-Catalyzed Reactions 251.3.1 Reductive Elimination of C-N, C-O, and C-S Bonds From Organopalladium(II) Complexes.1.4 Summary and Outlook.Abbreviations.References.2 Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Halides (Norio Miyaura).2.1 Introduction.2.2 Advances in the Synthesis of Organoboron Compounds.2.3 Reaction Mechanism.2.4 Reaction Conditions.2.5 Side Reactions.2.6 Reactions of B-Alkyl Compounds.2.7 Reactions of B-Alkenyl Compounds.2.8 Reactions of B-Aryl Compounds.2.9 Reactions of B-Allyl and B-Alkynyl Compounds.2.10 Reactions Giving Ketones.2.11 Dimerization of Arylboronic Acids.2.12 N-, O-, and S-Arylation.Abbreviations.References.3 Organotin Reagents in Cross-Coupling Reactions (Terence N. Mitchell).3.1 Introduction.3.2 Mechanism and Methodology.3.3 Natural Product Synthesis.3.4 Organic Synthesis.3.5 Polymer Chemistry.3.6 Inorganic Synthesis.3.7 Conclusions.3.8 Experimental Procedures.Abbreviations.References.4 Organosilicon Compounds in Cross-Coupling Reactions (Scott E. Denmark and Ramzi F. Sweis).4.1 Introduction.4.2 Modern Organosilicon-Cross-Coupling.4.3 Mechanistic Studies in Silicon-Cross-Coupling.4.4 Applications to Total Synthesis.4.5 Summary and Outlook.4.6 Experimental Procedures.Abbreviations.References.5 Cross-Coupling of Organyl Halides with Alkenes: The Heck Reaction (Stefan Brase and Armin de Meijere).5.1 Introduction.5.2 Principles.5.3 Cascade Reactions and Multiple Couplings.5.4 Related Palladium-Catalyzed Reactions.5.5 Enantioselective Heck-Type Reactions.5.6 Syntheses of Heterocycles, Natural Products and Other Biologically Active Compounds Applying Heck Reactions.5.7 Carbopalladation Reactions in Solid-Phase Syntheses.5.8 The Heck Reaction in Fine Chemicals Syntheses.5.9 Conclusions.5.10 Experimental Procedures.Acknowledgments.Abbreviations and Acronyms.References.6 Cross-Coupling Reactions to sp Carbon Atoms (Jeremiah A. Marsden and Michael M. Haley).6.1 Introduction.6.2 Alkynylcopper Reagents.6.3 Alkynyltin Reagents.6.4 Alkynylzinc Reagents.6.5 Alkynylboron Reagents.6.6 Alkynylsilicon Reagents.6.7 Alkynylmagnesium Reagents.6.8 Other Alkynylmetals.6.9 Concluding Remarks.6.10 Experimental Procedures.Acknowledgments.Abbreviations and Acronyms.References.7 Carbometallation Reactions (Ilan Marek, Nicka Chinkov, and Daniella Banon-Tenne).7.1 Introduction.7.2 Carbometallation Reactions of Alkynes.7.3 Carbometallation Reactions of Alkenes.7.4 Zinc-Enolate Carbometallation Reactions.7.5 Carbometallation Reactions of Dienes and Enynes.7.6 Carbometallation Reactions of Allenes.7.7 Conclusions.7.8 Experimental Procedures.Acknowledgments.References.8 Palladium-Catalyzed 1,4-Additions to Conjugated Dienes (Jan-E. Backvall).8.1 Introduction.8.2 Palladium(0)-Catalyzed Reactions.8.3 Palladium(II)-Catalyzed Reactions.References.9 Cross-Coupling Reactions via PI-Allylmetal Intermediates (Uli Kazmaier and Matthias Pohlman)9.1 Introduction.9.2 Palladium-Catalyzed Allylic Alkylations.9.3 Allylic Alkylations with Other Transition Metals.9.4 Experimental Procedures.Abbreviations.References.10 Palladium-Catalyzed Coupling Reactions of Propargyl Compounds (Jiro Tsuji and Tadakatsu Mandai).10.1 Introduction.10.2 Classification of Pd-Catalyzed Coupling Reactions of Propargyl Compounds.10.3 Reactions with Insertion into the sp2 Carbon Bond of Allenylpalladium Intermediates (Type I).10.4 Transformations via Transmetallation of Allenylpalladium Intermediates and Related Reactions (Type II).10.5 Reactions with Attack of Soft Carbon and Oxo Nucleophiles on the sp-Carbon of Allenylpalladium Intermediates (Type III).10.6 Experimental Procedures.Abbreviations.References.11 Carbon-Carbon Bond-Forming Reactions Mediated by Organozinc Reagents (Paul Knochel, M. Isabel Calaza, and Eike Hupe).11.1 Introduction.11.2 Methods of Preparation of Zinc Organometallics.11.3 Uncatalyzed Cross-Coupling Reactions.11.4 Copper-Catalyzed Cross-Coupling Reactions.11.5 Transition Metal-Catalyzed Cross-Coupling Reactions.11.6 Conclusions.11.7 Experimental Procedures.Abbreviations.References.12 Carbon-Carbon Bond-Forming Reactions Mediated by Organomagnesium Reagents (Paul Knochel, Ioannis Sapountzis, and Nina Gommermann).12.1 Introduction.12.2 Preparation of Polyfunctionalized Organomagnesium Reagents via a Halogen-Magnesium Exchange.12.3 Conclusions.12.4 Experimental Procedures.References.13 Palladium-Catalyzed Aromatic Carbon-Nitrogen Bond Formation (Lei Jiang and Stephen L. Buchwald).13.1 Introduction.13.2 Mechanistic Studies.13.3 General Features.13.4 Palladium-Catalyzed C-N Bond Formation.13.5 Vinylation.13.6 Amination On Solid Support.13.7 Conclusion.13.8 Representative Experimental Procedures.References.14 The Directed ortho-Metallation (DoM) Cross-Coupling Nexus. Synthetic Methodology for the Formation of Aryl-Aryl and Aryl-Heteroatom-Aryl Bonds (Eric J.-G. Anctil and Victor Snieckus).14.1 Introduction.14.2 The Aim of this Chapter.14.3 Synthetic Methodology derived from the DoM-Cross-Coupling Nexus.14.4 Applications of DoM in Synthesis.14.5 Conclusions and Prognosis.14.6 Selected Experimental Procedures.Abbreviations.References and Notes.15 Palladium- or Nickel-Catalyzed Cross-Coupling with Organometals Containing Zinc, Aluminum, and Zirconium: The Negishi Coupling (Ei-ichi Negishi, Xingzhong Zeng, Ze Tan, Mingxing Qian, Qian Hu, and Zhihong Huang).15.1 Introduction and General Discussion of Changeable Parameters.15.2 Recent Developments in the Negishi Coupling and Related Pd- or Ni-Catalyzed Cross-Coupling Reactions.15.3 Summary and Conclusions.15.4 Representative Experimental Procedures.References.Index.

4,294 citations

Journal ArticleDOI
TL;DR: s, or keywords if they used Heck-type chemistry in their syntheses, because it became one of basic tools of organic preparations, a natural way to make organic preparations.
Abstract: s, or keywords if they used Heck-type chemistry in their syntheses, because it became one of basic tools of organic preparations, a natural way to

3,187 citations

26 Jul 2002
Abstract: PREFACE. CONTRIBUTORS. INTRODUCTION AND BACKGROUND. Historical Background of Organopalladium Chemistry Fundamental Properties of Palladium and Patterns of the Reactions of Palladium and Its Complexes. PALLADIUM COMPOUNDS: STOICHIOMETRIC PREPARATION, IN SITU GENERATION, AND SOME PHYSICAL AND CHEMICAL PROPERTIES. Background for Part II. Pd(0) and Pd(II) Compounds Without Carbon-Palladium Bonds. Organopalladium Compounds Containing Pd(0) and Pd(II). Palladium Complexes Containing Pd(I), Pd(III), or Pd(IV). PALLADIUM-CATALYZED REACTIONS INVOLVING REDUCTIVE ELIMINATION. Background for Part III. Palladium-Catalyzed Carbon-Carbon Cross-Coupling. Palladium-Catalyzed Carbon-Hydrogen and Carbon- Heteroatom Coupling. PALLADIUM-CATALYZED REACTIONS INVOLVING CARBOPALLADATION. Background for Part IV. The Heck Reaction (Alkene Substitution via Carbopalladation- Dehydropalladation) and Related Carbopalladation Reactions. Palladium-Catalyzed Tandem and Cascade Carbopalladation of Alkynes and 1,1-Disubstituted Alkenes. Allylpalladation and Related Reactions of Alkenes, Alkynes, Dienes, and Other -Compounds. Alkynyl Substitution via Alkynylpalladation-Reductive Elimination. Arene Substitution via Addition-Elimination. Carbopalladation of Allenes. Synthesis of Natural Products via Carbopalladation. Cyclopropanation and Other Reactions of Palladium-Carbene (and Carbyne) Complexes. Carbopalladation via Palladacyclopropanes and Palladacyclopropenes. Palladium-Catalyzed Carbozincation. PALLADIUM-CATALYZED REACTIONS INVOLVING NUCLEOPHILIC ATTACK ON LIGANDS. Background for Part V. Palladium-Catalyzed Nucleophilic Substitution Involving Allylpalladium, Propargylpalladium, and Related Derivatives. Palladium-Catalyzed Reactions Involving Nucleophilic Attack on -Ligands of Palladium-Alkene, Palladium-Alkyne, and Related Derivatives. PALLADIUM-CATALYZED CARBONYLATION AND OTHER RELATED REACTIONS INVOLVING MIGRATORY INSERTION. Background for Part VI. Migratory Insertion Reactions of Alkyl-, Aryl-, Alkenyl-, and Alkynylpalladium Derivatives Involving Carbon Monoxide and Related Derivatives. Migratory Insertion Reactions of Allyl, Propargyl, and Allenylpalladium Derivatives Involving Carbon Monoxide and Related Derivatives. Acylpalladation and Related Addition Reactions. Other Reactions of Acylpalladium Derivatives. Synthesis of Natural Products via Palladium-Catalyzed Carbonylation. Palladium-Catalyzed Carbonylative Oxidation. Synthesis of Oligomeric and Polymeric Materials via Palladium-Catalyzed Successive Migratory Insertion of Isonitriles. CATALYTIC HYDROGENATION AND OTHER PALLADIUM-CATALYZED REACTIONS VIA HYDROPALLADATION, METALLOPALLADATION, AND OTHER RELATED SYN ADDITION REACTIONS WITHOUT CARBON-CARBON BOND FORMATION OR CLEAVAGE. Background for Part VII. Palladium-Catalyzed Hydrogenation. Palladium-Catalyzed Isomerization of Alkenes, Alkynes, and Related Compounds without Skeletal Rearrangements. Palladium-Catalyzed Hydrometallation. Metallopalladation. Palladium-Catalyzed Syn-Addition Reactions of X-Pd Bonds (X = Group 15, 16, and 17 Elements). PALLADIUM-CATALYZED OXIDATION REACTIONS THAT HAVE NOT BEEN DISCUSSED IN EARLIER PARTS. Background for Part VIII. Oxidation via Reductive Elimination of Pd(II) and Pd(IV) Complexes. Palladium-Catalyzed or -Promoted Oxidation via 1,2- or 1,4-Elimination. Other Miscellaneous Palladium-Catalyzed or -Promoted Oxidation Reactions. REARRANGEMENT AND OTHER MISCELLANEOUS REACTIONS CATALYZED BY PALLADIUM. Background for Part IX. Rearrangement Reactions Catalyzed by Palladium. TECHNOLOGICAL DEVELOPMENTS IN ORGANOPALLADIUM CHEMISTRY. Aqueous Palladium Catalysis. Palladium Catalysts Immobilized on Polymeric Supports. Organopalladium Reactions in Combinatorial Chemistry. REFERENCES. General Guidelines on References Pertaining to Palladium and Organopalladium Chemistry. Books (Monographs). Reviews and Accounts (as of September 1999). SUBJECT INDEX.

2,150 citations

Journal ArticleDOI
Abstract: The Pd-catalyzed cross coupling reactions between sp 2 -C halides and terminal acetylenes have been independently reported by Heck, Cassar and us in 1975. The former two methods have been developed as an extension of the Heck reaction to an acetylenic CH-bond. Ours has been discovered on the base of combination of Pd-catalyzed cross-coupling of sp 2 -C halides with terminal acetylenes and Cu-catalyzed alkynylation of metal complexes developed by us in the course of systematic studies on transition metal acetylide chemistry. The coupling reactions have been used extensively as a reliable method for the synthesis of eneyne-based acetylenic materials. Some recent advances of the coupling are also described.

1,216 citations

Network Information
Related Topics (5)

95.6K papers, 1.3M citations

96% related

39.9K papers, 728.7K citations

96% related
Enantioselective synthesis

58.1K papers, 1.6M citations

96% related

64.7K papers, 1.3M citations

93% related

223.5K papers, 2M citations

93% related
No. of papers in the topic in previous years