scispace - formally typeset
Search or ask a question
Topic

Hele-Shaw flow

About: Hele-Shaw flow is a research topic. Over the lifetime, 5451 publications have been published within this topic receiving 151320 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an experimental and numerical investigation of the two-dimensional flow normal to a flat plate is described, where the plate is started impulsively from rest in a channel for Reynolds numbers, based on the breadth of the plate, in the range 5 ≤ Re ≤ 20.
Abstract: An experimental and numerical investigation of the two-dimensional flow normal to a flat plate is described. In the experiments, the plate is started impulsively from rest in a channel for Reynolds numbers, based on the breadth of the plate, in the range 5 ≤ Re ≤ 20. Over this range of Re the flow remains symmetrical and stable and tends to a steady state but is shown to depend strongly on the ratio λ of the plate to channel breadth. The evolution of the experimental flow with time and Reynolds number is studied and the variation with λ in the range 0.05 ≤ λ ≤ 0.2 is investigated sufficiently to enable an estimate of properties of the flow as λ → 0 to be obtained for the steady-state flow. The numerical results are obtained for steady flow normal to a flat plate in an unbounded fluid for Reynolds numbers up to Re = 100. They supplement and extend results for this flow obtained for values of Re up to 20 by Hudson & Dennis (1985). The present solutions have been found using a vorticity-stream function formulation rather than the primitive-variable approach of Hudson & Dennis and provide an independent check on these results. A comparison of the theoretical results for Re ≤ 20 with the limit λ → 0 of the experimental results is, generally speaking, extremely satisfactory.

58 citations

Journal ArticleDOI
TL;DR: In this article, the axisymmetric base flow fields were obtained for a similar set of geometries, using water as the working fluid, and the effect of a variation in blockage size on the onset and mode of instability was investigated, in addition to an analysis of the instability observed in the experimental flows.
Abstract: Steady inlet flow through a circular tube with an axisymmetric blockage of varying size is studied both numerically and experimentally. The geometry consists of a long, straight tube and a blockage, semicircular in cross-section, serving as a simplified model of an arterial stenosis. The stenosis is characterized by a single parameter, the aim being to highlight fundamental behaviours of constricted flows, in terms of the total blockage. The Reynolds number is varied between 50 and 2500 and the stenosis degree by area between 0.20 and 0.95. Numerically, a spectral-element code is used to obtain the axisymmetric base flow fields, while experimentally, results are obtained for a similar set of geometries, using water as the working fluid. At low Reynolds numbers, the flow is steady and characterized by a jet flow emanating from the contraction, surrounded by an axisymmetric recirculation zone. The effect of a variation in blockage size on the onset and mode of instability is investigated. Linear stability analysis is performed on the simulated axisymmetric base flows, in addition to an analysis of the instability, seemingly convective in nature, observed in the experimental flows. This transition at higher Reynolds numbers to a time-dependent state, characterized by unsteadiness downstream of the blockage, is studied in conjunction with an investigation of the response of steady lower Reynolds number flows to periodic forcing.

58 citations

Journal ArticleDOI
TL;DR: In this article, the linear three-dimensional instability of the flow due to a low frequency traveling magnetic field in a regular cylinder is studied numerically for height-to-diameter ratios in the range [0.5:2.5].

58 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the temporal development of viscous incompressible flow induced by an impulsively started circular cylinder which performs time-dependent rotational oscillations about its axis and translates at right angles to this axis.
Abstract: The temporal development of two-dimensional viscous incompressible flow induced by an impulsively started circular cylinder which performs time-dependent rotational oscillations about its axis and translates at right angles to this axis is investigated. The investigation is based on the solutions of the unsteady Navier-Stokes equations. A series expansion for small times is developed. The Navier-Stokes equations are also integrated by a spectral-finite difference method for moderate values of time for both moderate and high Reynolds numbers. The numerical method is checked with the results of the analytical solution. The effects of the Reynolds number and of the forcing Strouhal number S on the laminar asymmetric flow structure in the near-wake region are studied. The lift and drag coefficients are also extracted from numerical results. An interesting phenomenon has been observed both in the flow patterns and in the behaviour of drag coefficients for S = π/2 at Reynolds number R = 500 and is discussed. For comparison purposes the start-up flow is determined numerically at a low Reynolds number and is found to be in good agreement with previous experimental predictions.

58 citations

Journal ArticleDOI
TL;DR: In this article, the basis and advantages of non-Navier Stokes flow computations as compared to solution of the full equations are examined from both a numerical and asymptotic analysis viewpoint.

58 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
94% related
Turbulence
112.1K papers, 2.7M citations
91% related
Boundary layer
64.9K papers, 1.4M citations
90% related
Heat transfer
181.7K papers, 2.9M citations
86% related
Boundary value problem
145.3K papers, 2.7M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202282
202120
202013
20199
201829