scispace - formally typeset
Search or ask a question
Topic

Helicase

About: Helicase is a research topic. Over the lifetime, 5863 publications have been published within this topic receiving 294230 citations. The topic is also known as: ATP-dependent helicase.


Papers
More filters
Journal ArticleDOI
TL;DR: The nucleotide sequence of the RNA genome of the human hepatitis C virus has been determined and significant genome diversity is apparent within the putative 5' structural gene region of different HCV isolates, suggesting the presence of closely related but distinct viral genotypes.
Abstract: The nucleotide sequence of the RNA genome of the human hepatitis C virus (HCV) has been determined from overlapping cDNA clones. The sequence (9379 nucleotides) has a single large open reading frame that could encode a viral polyprotein precursor of 3011 amino acids. While there as little overall amino acid and nucleotide sequence homology with other viruses, the 5' HCV nucleotide sequence upstream of this large open reading frame has substantial similarity to the 5' termini of pestiviral genomes. The polyprotein also has significant sequence similarity to helicases encoded by animal pestiviruses, plant potyviruses, and human flaviviruses, and it contains sequence motifs widely conserved among viral replicases and trypsin-like proteases. A basic, presumed nucleocapsid domain is located at the N terminus upstream of a region containing numerous potential N-linked glycosylation sites. These HCV domains are located in the same relative position as observed in the pestiviruses and flaviviruses and the hydrophobic profiles of all three viral polyproteins are similar. These combined data indicate that HCV is an unusual virus that is most related to the pestiviruses. Significant genome diversity is apparent within the putative 5' structural gene region of different HCV isolates, suggesting the presence of closely related but distinct viral genotypes.

1,837 citations

Journal ArticleDOI
TL;DR: The results highlight ingenious mechanisms for initiating antiviral innate immune responses and the action of virus-encoded inhibitors.
Abstract: The cellular protein retinoic acid-inducible gene I (RIG-I) senses intracellular viral infection and triggers a signal for innate antiviral responses including the production of type I IFN. RIG-I contains a domain that belongs to a DExD/H-box helicase family and exhibits an N-terminal caspase recruitment domain (CARD) homology. There are three genes encoding RIG-I-related proteins in human and mouse genomes. Melanoma differentiation associated gene 5 (MDA5), which consists of CARD and a helicase domain, functions as a positive regulator, similarly to RIG-I. Both proteins sense viral RNA with a helicase domain and transmit a signal downstream by CARD; thus, these proteins share overlapping functions. Another protein, LGP2, lacks the CARD homology and functions as a negative regulator by interfering with the recognition of viral RNA by RIG-I and MDA5. The nonstructural protein 3/4A protein of hepatitis C virus blocks the signaling by RIG-I and MDA5; however, the V protein of the Sendai virus selectively abrogates the MDA5 function. These results highlight ingenious mechanisms for initiating antiviral innate immune responses and the action of virus-encoded inhibitors.

1,632 citations

Journal ArticleDOI
TL;DR: It is shown that the length of dsRNA is important for differential recognition by RIG-I and MDA5, and the Mda5 ligand, polyinosinic-polycytidylic acid, was converted to a Rig-I ligand after shortening of the ds RNA length.
Abstract: The ribonucleic acid (RNA) helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation–associated gene 5 (MDA5) recognize distinct viral and synthetic RNAs, leading to the production of interferons. Although 5′-triphosphate single-stranded RNA is a RIG-I ligand, the role of RIG-I and MDA5 in double-stranded (ds) RNA recognition remains to be characterized. In this study, we show that the length of dsRNA is important for differential recognition by RIG-I and MDA5. The MDA5 ligand, polyinosinic-polycytidylic acid, was converted to a RIG-I ligand after shortening of the dsRNA length. In addition, viral dsRNAs differentially activated RIG-I and MDA5, depending on their length. Vesicular stomatitis virus infection generated dsRNA, which is responsible for RIG-I–mediated recognition. Collectively, RIG-I detects dsRNAs without a 5′-triphosphate end, and RIG-I and MDA5 selectively recognize short and long dsRNAs, respectively.

1,442 citations

Journal ArticleDOI
TL;DR: This review sets out to define a nomenclature for helicase and translocase enzymes based on current knowledge of sequence, structure, and mechanism, and delineate six superfamilies of enzymes, with examples of crystal structures where available.
Abstract: Helicases and translocases are a ubiquitous, highly diverse group of proteins that perform an extraordinary variety of functions in cells. Consequently, this review sets out to define a nomenclature for these enzymes based on current knowledge of sequence, structure, and mechanism. Using previous definitions of helicase families as a basis, we delineate six superfamilies of enzymes, with examples of crystal structures where available, and discuss these structures in the context of biochemical data to outline our present understanding of helicase and translocase activity. As a result, each superfamily is subdivided, where appropriate, on the basis of mechanistic understanding, which we hope will provide a framework for classification of new superfamily members as they are discovered and characterized.

1,145 citations

Journal ArticleDOI
TL;DR: Three large superfamilies and two smaller families of helicases are described and experimental results support the value of the conserved motifs for prediction of structure and function of the helicases.

1,127 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
93% related
Peptide sequence
84.1K papers, 4.3M citations
92% related
Regulation of gene expression
85.4K papers, 5.8M citations
89% related
DNA
107.1K papers, 4.7M citations
89% related
Transcription factor
82.8K papers, 5.4M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023350
2022445
2021333
2020279
2019293
2018257