scispace - formally typeset
Search or ask a question
Topic

Hematopoietic stem cell niche

About: Hematopoietic stem cell niche is a research topic. Over the lifetime, 338 publications have been published within this topic receiving 53255 citations. The topic is also known as: hematopoietic stem cell niche.


Papers
More filters
Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: Osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation.
Abstract: Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals. To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs). Here we show that PPR-stimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, ligand-dependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by gamma-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.

3,434 citations

Journal ArticleDOI
01 Jul 2005-Cell
TL;DR: This work compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors and found that both groups occupied multiple niches, including sinusoidal endothelium in diverse tissues.

3,091 citations

Journal ArticleDOI
12 Aug 2010-Nature
TL;DR: It is demonstrated that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
Abstract: The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin(+) MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent 'mesenspheres' that can self-renew and expand in serial transplantations. Nestin(+) MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or beta3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin(+) cells and favours their osteoblastic differentiation, in vivo nestin(+) cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin(+) MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin(+) cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.

3,012 citations

Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: It is concluded that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of H SCs by regulating niche size.
Abstract: Haematopoietic stem cells (HSCs) are a subset of bone marrow cells that are capable of self-renewal and of forming all types of blood cells (multi-potential). However, the HSC 'niche'--the in vivo regulatory microenvironment where HSCs reside--and the mechanisms involved in controlling the number of adult HSCs remain largely unknown. The bone morphogenetic protein (BMP) signal has an essential role in inducing haematopoietic tissue during embryogenesis. We investigated the roles of the BMP signalling pathway in regulating adult HSC development in vivo by analysing mutant mice with conditional inactivation of BMP receptor type IA (BMPRIA). Here we show that an increase in the number of spindle-shaped N-cadherin+CD45- osteoblastic (SNO) cells correlates with an increase in the number of HSCs. The long-term HSCs are found attached to SNO cells. Two adherens junction molecules, N-cadherin and beta-catenin, are asymmetrically localized between the SNO cells and the long-term HSCs. We conclude that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of HSCs by regulating niche size.

2,949 citations

Journal Article
TL;DR: Several experimental findings that are inconsistent with the view that the spleen colony-forming cell (CFU-S) is the primary haemopoietic stem cell are reviewed and a hypothesis is proposed in which the stem cell is seen in association with other cells which determine its behaviour.
Abstract: Several experimental findings that are inconsistent with the view that the spleen colony-forming cell (CFU-S) is the primary haemopoietic stem cell are reviewed. Recovery of CFU-S, both quantitatively and qualitatively, can proceed differently depending upon the cytotoxic agent or regime used to bring about the depletion. The virtual immortality of the stem cell population is at variance with evidence that the CFU-S population has an 'age-structure' which has been invoked by several workers to explain experimental and clinical observations. To account for these inconsistencies, a hypothesis is proposed in which the stem cell is seen in association with other cells which determine its behaviour. It becomes essentially a fixed tissue cell. Its maturation is prevented and, as a result, its continued proliferation as a stem cell is assured. Its progeny, unless they can occupy a similar stem cell 'niche', are first generation colony-forming cells, which proliferate and mature to acquire a high probability of differentiation, i.e., they have an age-structure. Some of the experimental situations reviewed are discussed in relation to the proposed hypothesis.

2,407 citations


Network Information
Related Topics (5)
Stem cell
129.1K papers, 5.9M citations
85% related
Cellular differentiation
90.9K papers, 6M citations
82% related
Transcription factor
82.8K papers, 5.4M citations
76% related
Signal transduction
122.6K papers, 8.2M citations
76% related
T cell
109.5K papers, 5.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202119
202020
201925
201827
201715
201619