scispace - formally typeset
Search or ask a question

Showing papers on "Heritiera fomes published in 2009"


Journal Article
TL;DR: In this article, the authors make a contribution towards the development and implementation of management plan for mangrove wetlands resources and to ensure that fresh water is supplied to the Sundarbans by the Ganges.
Abstract: Through their complex network of river channels, the Ganges, Brahmaputra and Meghna Rivers cover an area of about 1.76 million km2, their boundaries extend across different countries such as Bangladesh, Bhutan, China, India, and Nepal. The Sundarbans are found at the coast of the Ganges River and are known as the world’s single largest mangrove forest with 3.5 percent of the world’s mangroves covering an area of 6017 km2. The Sundarbans wetlands act as a natural shield that protects the coastal area from storm surges and cyclones in pre and post monsoon periods. However, due to increased in irrigation of agriculture, industrial activity and the diversion of Ganges water at Farakka Barrage (India) in early 1975, both siltation and salinity have increased in the Sundarbans which is threatening the Sundarbans ecosystems. Consequently the dominant Sundari (Heritiera fomes) and Goran (Ceriops decendra) are affected by top-dying disease which is recognized as a key management concern. The Ganges water sharing is not just a geo-techno-political problem; it is also a humanitarian problem. So, interaction and educational awareness between concerned states are of great significant. The objective of this paper is to make a contribution towards the development and implementation of management plan for mangrove wetlands resources and to ensure that fresh water is supplied to the Sundarbans by the Ganges. Water salinity simulation and modeling would be a proper tool for decision making and allow planners to protect the Sundarbans ecosystems in future.

84 citations



01 Jan 2009
TL;DR: In this paper, Fourier Polynomial Models have been used on 13 rivers where the time series approach (4 years) has been considered and the results show that only one river has crossed the salinity threshold line of 20 ppt or 43,220 dS/m which was the maximum value in 2000.
Abstract: Cultural landscapes are areas of exceptional beauty, containing superlative natural phenomena and are of ecological importance. At present cultural landscapes and wetlands are the most spectacular global issues for economic growth and balancing of ecosystems. The Sundarbans has an outstanding universal value where the cultural landscape was shared by the indigenous pastoral society over thousand years ago and it is still visible. The site is representing significant ongoing ecological and biological processes in the evolution and development of mangrove ecosystems and communities of plants and animals. It is situated in the Ganges transboundary catchment which is known as the single largest stretch of productive mangrove ecosystems in the world. It covers 10,000 km² between Bangladesh and India. The Sundarbans portion of Bangladesh is about 62 % and covers an area of 6017 km². It was declared as world natural heritage site by the UNESCO in 1997 and as a Ramsar site in 1992 already. There is an agglomeration of biodiversity with 66 different species of mangroves growing there. For comparison: 70 species of mangroves are found in the world. A large part of mangrove wetlands in Bangladesh, almost 45 %, have disappeared within the last three decades. The Gorai River is the main tributary of the Ganges which supplies downstream freshwater to the Sundarbans and ensures the ecosystems balance in the coastal region. Since the diversion of the Ganges water at Farakka Barrage in India from early 1975, the salinity level has increased drastically in the south western part of the region. Due to the reduction of the Ganges flows the industries are facing serious problems. Inequality control of the products and fragile affects are demonstrating on agriculture, fisheries, navigation, and hydromorphology, quality of drinking water and mangrove wetlands ecosystems. As a result, about 170,000 hectares (20.4%) of new land has been affected by various degrees of salinity during the last three decades. 38 % of the country’s territory and 33 % of its population is already affected by salinity intrusions. The saline front defined by the 0.5 dS/m isohaline has penetrated in the Nabaganga River as far north as Magura is far from the coast (240 km). Similarly about 6 dS/m has penetrated 173 km from the Sea in the Atharobanka River to the vicinity of the off-take from the Madhumati River. The research findings are showing 10805-21610 dS/m salinity is the best productive range in Sundarbans, where only 20 % of the area is within 32415 dS/m range of salinity and 80 % of the area (4813.60 km²) has a salinity rate over 32414 dS/m. The dominant species Heritiera fomes and Ceriops decendra are affected by top-dying disease which is recognised as key management concern. Procedures of water salinity modelling of 13 rivers in the Sundarbans region lay out increasing salinity trends. Fourier Polynomial Models have been done on 13 rivers where the time series approach (4 years) has been considered. The results show that only one river has crossed the salinity threshold line of 20 ppt or 43,220 dS/m which was the maximum value in 2000. Whereas 6 rivers have crossed in 2001, 8 rivers have crossed in 2002 and important 11 rivers have crossed the water salinity threshold line in 2003. According to average peak values of river water salinity there are 4 rivers (basin 1, 2, 3 and 4) that are in good condition, two rivers (basin 7 and 9) carry the moderate situation and 7 rivers (basin 5, 6, 7, 8, 10, 12 and 13) carry the high salinity rate in the dry season, which are major threats for mangrove ecosystems in the Sundarbans. The high salinity zone is located in the south-western corner of the Sundarbans; the previous values were 38,898-54,025 dS/m while the present values are 54,025 – 69,152 dS/m. Furthermore the area has been extended from South to North and East to West direction. The Fourier Polynomial models show the cyclic increasing behaviour of water salinity in the Sundarbans Rivers. Considering the results of all models and threshold values of water salinity for the Sundarbans case, it is clearly indicated and forecasted the message that upstream fresh water supply is necessary and emergent for the protection of cultural landscapes and mangrove wetlands ecosystems in the Sundarbans region. As priority is given by surface water salinity modelling, statements are formulated to support planning activities and to protect a special natural heritage site. The findings of this study would be a potential contribution to make a comprehensive management plan for the long-term conservation and protection of the cultural landscape and mangrove wetlands ecosystem in the Sundarbans region.

21 citations


Journal ArticleDOI
TL;DR: Elevated assimilation rate coupled with increased chlorophyll content, increased conductance and higher specific leaf area in non-saline condition indicates ability of these mangroves to grow even under minimal substrate salinity, indicating considerable difference in regulation of these enzymes due to salt stress and /or reverse adaptation.
Abstract: Mangroves are physiologically interesting as potential models for stress tolerance and as sources of alternative ideas about physiological strategies relevant at the ecosystem level. Variation in habitat has great impact on the physiological behavior and biochemical expression level of a particular plant species. Five species of mangroves, growing in saline and fresh water conditions were assessed for their ecological fitness in two different habitats. Assessments were based on some physiological and biochemical parameters measured from the fully exposed mature leaves under saline (15–27 PPT) and non-saline (1.2–2 PPT) conditions. Among the five species considered for investigation Bruguiera gymnorrhiza, Excoecaria agallocha and Phoenix paludosa grow luxuriously in the Sundarbans forest, while the rest two (Heritiera fomes, Xylocarpus granatum) are scanty. A comparative account of photosynthetic efficiency, chlorophyll content, mesophyll and stomatal conductance, specific leaf area, photosynthetic nitrogen use efficiency, total foliar free amino acids and differential expression of some antioxidant isoenzymes in leaf were estimated between the saline and non-saline plants. Elevated assimilation rate coupled with increased chlorophyll content, increased conductance and higher specific leaf area in non-saline condition indicates ability of these mangroves to grow even under minimal substrate salinity. The optimum PAR acquisition for photosynthesis in B. gymnorrhiza, E. agallocha and P. paludosa was higher under salt stress, while the maximum assimilation rate was lower in control plants. The opposite trend occurred in H. fomes and X. granatum, where the peak photosynthesis was lower under non-saline conditions even at a higher irradiance than in the saline forest. The isoform patterns of peroxidase, acid phosphatase and esterase indicated considerable difference in regulation of these enzymes due to salt stress and /or reverse adaptation.

21 citations


Journal ArticleDOI
TL;DR: In this article, root exudates were obtained from three mangrove species, viz. Bruguiera gymnorrhiza, Excoecaria agallocha, and Heritiera fomes.
Abstract: Summary Root exudates were obtained from three mangrove species, viz. Bruguiera gymnorrhiza, Excoecaria agallocha, and Heritiera fomes. Spot tests revealed the presence of, presumably, phenolic compounds in the exudates. Paper chromatography revealed two spots each for B. gymnorrhiza and H. fomes and a single spot for E. agallocha. GC-MS analysis suggested the presence of aminopyrine, palmitic acid, stearic acid, di-n-propyl ether, and 2,5-anhydrogluconic acid in B. gymnorrhiza exudates, aminopyrine and palmitic acid in E. agallocha exudates, and aminopyrine, palmitic acid, and 2,5-anhydrogluconic acid in H. fomes exudates.

18 citations