scispace - formally typeset
Search or ask a question
Topic

Herschel–Bulkley fluid

About: Herschel–Bulkley fluid is a research topic. Over the lifetime, 1946 publications have been published within this topic receiving 49318 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a basic design method of doubly acting fluid viscous dampers with double guide bars is presented, where the flow of the viscoelastic fluid between two parallel plates, one of which is started suddenly and the other of which remains still, is analyzed.
Abstract: A basic design method of doubly acting fluid viscous dampers with double guide bars is presented. The flow of the viscoelastic fluid between two parallel plates, one of which is started suddenly and the other of which is still, is analyzed. According to this solution, the velocity and the shear stress of the fluid at the fringe of the piston are solved approximately. A mathematical model of viscous dampers is derived, and the shock test is carried out. From experimental results, the parameters of the mathematical model are determined. Consequently, a semi-empirical design equation is obtained. Applying this equation to a certain practical damper, the damping material is chosen and the physical dimensions of the damper are determined. Shock tests using this damper are performed. Theoretical results are in good agreement with experimental results, which validates the reliability of the calculated physical dimensions of the specimen damper and the validity of the basic design equation.

14 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the electroosmotic flow of a viscoplastic fluid within a slit nanochannel modulated by periodically arranged uncharged slipping surfaces and no-slip charged surfaces embedded on the channel walls.
Abstract: In this paper, we consider the electroosmotic flow (EOF) of a viscoplastic fluid within a slit nanochannel modulated by periodically arranged uncharged slipping surfaces and no-slip charged surfaces embedded on the channel walls. The objective of the present study is to achieve an enhanced EOF of a non-Newtonian yield stress fluid. The Herschel-Bulkley model is adopted to describe the transport of the non-Newtonian electrolyte, which is coupled with the ion transport equations governed by the Nernst-Planck equations and the Poisson equation for electric field. A pressure-correction-based control volume approach is adopted for the numerical computation of the governing nonlinear equations. We have derived an analytic solution for the power-law fluid when the periodic length is much higher than channel height with uncharged free-slip patches. An agreement of our numerical results under limiting conditions with this analytic model is encouraging. A significant EOF enhancement and current density in this modulated channel are achieved when the Debye length is in the order of the nanochannel height. Flow enhancement in the modulated channel is higher for the yield stress fluid compared with the power-law fluid. Unyielded region develops adjacent to the uncharged slipping patches, and this region expands as slip length is increased. The impact of the boundary slip is significant for the shear thinning fluid. The results indicate that the channel can be cation selective and nonselective based on the Debye layer thickness, flow behavior index, yield stress, and planform length of the slip stripes.

14 citations

Journal ArticleDOI
TL;DR: In this article, the Navier boundary condition is replaced with a boundary condition that allows a certain degree of tangential fluid slip via a constant slip length, which can be used to obtain analytical expressions for any fluid-solid combination.
Abstract: It is now well established that for fluid flow at the micro- and nano-scales the standard no-slip boundary condition of fluid mechanics at fluid–solid interfaces is not applicable and must be replaced by a boundary condition that allows some degree of tangential fluid slip. Although molecular dynamics studies support this notion, an experimental verification of a slip boundary condition remains lacking, primarily due to the difficulty of performing accurate experimental observations at small scales. In this article, three simple fluid problems are studied in detail, namely a fluid near a solid wall that is suddenly set in motion (Stokes’ first problem), the long-time behavior of a fluid near an oscillating solid wall (Stokes’ second problem), and the long-time behavior of a fluid between two parallel walls one of which is oscillating (oscillatory Couette flow). The no-slip boundary condition is replaced with the Navier boundary condition, which allows a certain degree of tangential fluid slip via a constant slip length. The aim is to obtain analytical expressions, which may be used in an experimental determination of the constant slip length for any fluid–solid combination.

14 citations

Journal ArticleDOI
TL;DR: In this article, the 3D flow of a generalized Burgers' fluid between two side walls generated by an exponential accelerating plate and a constant pressure gradient is studied, where the no-slip assumption between the acceleration plate and the Burgers fluid is no longer valid.

14 citations

Journal ArticleDOI
TL;DR: A model is presented that predicts the pressure tensor for a non-Newtonian bulk fluid under a homogeneous planar flow field and provides a quantitative description of the strain-thinning viscosity, pressure dilatancy, deviatoric viscoelastic lagging, and out-of-flow-plane pressure anisotropy.
Abstract: Non-equilibrium molecular dynamics simulations of an atomic fluid under shear flow, planar elongational flow, and a combination of shear and elongational flow are unified consistently with a tensorial model over a wide range of strain rates. A model is presented that predicts the pressure tensor for a non-Newtonian bulk fluid under a homogeneous planar flow field. The model provides a quantitative description of the strain-thinning viscosity, pressure dilatancy, deviatoric viscoelastic lagging, and out-of-flow-plane pressure anisotropy. The non-equilibrium pressure tensor is completely described through these four quantities and can be calculated as a function of the equilibrium material constants and the velocity gradient. This constitutive framework in terms of invariants of the pressure tensor departs from the conventional description that deals with an orientation-dependent description of shear stresses and normal stresses. The present model makes it possible to predict the full pressure tensor for a simple fluid under various types of flows without having to produce these flow types explicitly in a simulation or experiment.

14 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
82% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Boundary layer
64.9K papers, 1.4M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202341
202295
202117
202022
201920
201836