scispace - formally typeset
Search or ask a question
Topic

Herschel–Bulkley fluid

About: Herschel–Bulkley fluid is a research topic. Over the lifetime, 1946 publications have been published within this topic receiving 49318 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the peristaltic transport of shear thinning non-Newtonian materials was analyzed using perturbation expansion in terms of a variant of the Deborah number.
Abstract: In order to determine the characteristics of the peristaltic transport of shear thinning non-Newtonian materials, the motion of a third-order fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic traveling wave of large wavelength and negligibly small Reynolds number was analyzed using a perturbation expansion in terms of a variant of the Deborah number. Within the range of validity of this analysis, we found the pumping rate of a shear-thinning fluid is less than that for a Newtonian fluid having a shear viscosity the same as the lower-limiting viscosity of the nonNewtonian material. Also, the space of variables for which trapping of a bolus of fluid occurs is reduced for the shear-thinning fluid investigated here.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the bi-viscosity model is used as a constitutive equation for blood, and the flow is assumed to be periodic, incompressible and axisymmetric.

65 citations

Journal ArticleDOI
TL;DR: The eigenvalues and eigendirections of the stress tensor are used to quantify the anisotropy in stress and form the basis of a newly proposed objective, inherently anisotropic constitutive model that allows for non-collinear stress and strain gradient by construction.
Abstract: We present molecular dynamics simulations of planar Poiseuille flow of a Lennard-Jones fluid at various temperatures and body forces. Local thermostatting is used close to the walls to reach steady-state up to a limit body force. Macroscopic fields are obtained from microscopic data by time- and space-averaging and smoothing the data with a self-consistent coarse-graining method based on kernel interpolation. Two phenomena make the system interesting: (i) strongly confined fluids show layering, i.e., strong oscillations in density near the walls, and (ii) the stress deviates from the Newtonian fluid assumption, not only in the layered regime, but also much further away from the walls. Various scalar, vectorial, and tensorial fields are analyzed and related to each other in order to understand better the effects of both the inhomogeneous density and the anisotropy on the flow behavior and rheology. The eigenvalues and eigendirections of the stress tensor are used to quantify the anisotropy in stress and form the basis of a newly proposed objective, inherently anisotropic constitutive model that allows for non-collinear stress and strain gradient by construction.

64 citations

Journal ArticleDOI
TL;DR: In this paper, the analytical solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate are presented for the velocity field and the corresponding shear stress in series forms in terms of generalized G and R functions by using the discrete inverse Laplace transform method.
Abstract: This paper deals with the analytical solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate. The fractional calculus approach is used to establish the constitutive relationship of fluid model. Exact solutions are presented for the velocity field and the corresponding shear stress in series forms in terms of generalized G and R functions by using the discrete inverse Laplace transform method.

64 citations

Journal ArticleDOI
TL;DR: In this paper, the three-dimensional laminar and steady boundary layer flow of an electrically nonconducting and incompressible magnetic fluid, with low Curie temperature and moderate saturation magnetization, over an elastic stretching sheet, is numerically studied.
Abstract: The three-dimensional laminar and steady boundary layer flow of an electrically nonconducting and incompressible magnetic fluid, with low Curie temperature and moderate saturation magnetization, over an elastic stretching sheet, is numerically studied. The fluid is subject to the magnetic field generated by an infinitely long, straight wire, carrying an electric current. The magnetic fluid far from the surface is at rest and at temperature greater of that of the sheet. It is also assumed that the magnetization of the fluid varies with the magnetic field strength H and the temperature T. The numerical solution of the coupled and nonlinear system of ordinary differential equations, resulting after the introduction of appropriate nondimensional variables, with its boundary conditions, describing the problem under consideration, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the case of a representative water-based magnetic fluid and for specific values of the dimensionless parameters entering into the problem, and the obtained results are presented graphically for these values of the parameters. The analysis of these results showed that there is an interaction between the motions of the fluid, which are induced by the stretching surface and by the action of the magnetic field, and the flow field is noticeably affected by the variations in the magnetic interaction parameter β. The important results of the present analysis are summarized in Sec. 6.

63 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
82% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Boundary layer
64.9K papers, 1.4M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202341
202295
202117
202022
201920
201836