scispace - formally typeset
Search or ask a question
Topic

Herschel–Bulkley fluid

About: Herschel–Bulkley fluid is a research topic. Over the lifetime, 1946 publications have been published within this topic receiving 49318 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed.
Abstract: Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time λ1 and retardation time λ2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.

34 citations

01 Jun 2004
TL;DR: In this paper, a study of dam break wave with thixotropic fluid is presented, which is the first theoretical analysis combining the basic principles of unsteady flow motion with the Saint-Venant equations.
Abstract: Thixotropic fluids are commonly used in the construction industry (e.g. liquid cements, liquid concrete, drilling fluids), industrial applications (e.g. muds, paints) and the food industry (e.g. liquid dairy products, ketchup). Related applications include some forms of mud flows and debris flows, pasty sewage sludges and some wastewater treatment residues. Thixotropy is the characteristic of a fluid to form a gelled structure over time when it is not subjected to shearing and to liquefy when agitated. A thixotropic fluid is a non-Newtonian fluid with a viscosity that is a function of both shear rate y and instantaneous state(s) of structure of the material. Such a fluid exhibits a reversible time-dependent decrease in apparent viscosity under shear rate and a gradual recovery when the shear stress is removed. This report describes a basic study of dam break wave with thixotropic fluid. A dam break wave is a sudden release of a mass of fluid in a channel. This type of flows has not been studied to date with thixotropic fluid, despite its practical applications : e.g., mudflow release, concrete tests including L-Box and J-Ring for self-consolidating concrete testing, paint applications. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations for a thixotropic fluid down a prismatic sloping channel. The thixotropic fluid model of COUSSOT et al. (2002a) was used since it describes the instantaneous state of fluid structure by a single parameter. The analytical solution of the basic flow motion and rheology equations predict three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid : (1) a short motion with relatively-rapid flow stoppage for relatively small mass of fluid, (2) a fast flow motion for a large mass of fluid, or (3) an intermediate motion initially rapid before final fluid stoppage for intermediate mass of fluid and intermediate initial rest period To. Physical experiments were performed with bentonite suspensions. Systematic experiments showed four types of flows. For small bentonite mass concentrations and short relaxation times To, the fluid flowed rapidly down the slope and spilled into the overflow container (Flow Type I). For intermediate concentrations and rest periods, the suspension flowed rapidly initially, decelerated relatively suddenly, continued to flow slowly for sometimes before complete stoppage (Flow Type II). For large mass concentrations and long rest periods, the mass of fluid stretched down the slope, until the head separated from the tail (Flow Type III). The last flow pattern (Type IV) corresponded to an absence of flow for large bentonite concentrations and long rest times. Quantitative informations were documented in terms of the final fluid thickness, wave front position, wave front curvature, side profile of the wave front during motion and after stoppage, as well as the flow motion immediately after gate opening. Some freesurface instabilities are also discussed and illustrated. It is believed that the present study is the first theoretical analysis combining successfully the basic principles of unsteady flow motion (i.e. Saint-Venant equations) with a thixotropic fluid model, which was validated with large-size systematic laboratory experiments. It is the belief of the writers that, for such complex systems this kind of approach, combining both rheology and fluid dynamics, is necessary to gain new insights of these complicated flow motions.

34 citations

Journal ArticleDOI
TL;DR: In this paper, a coupled fluid structure interaction problem is analyzed using semi-analytical finite element method involving composite cylindrical shells conveying hot fluid for free vibration and buckling behavior.

34 citations

Journal ArticleDOI
TL;DR: A modification of Taylor's analysis of the dispersion of Newtonian fluids in laminar flow in a circular tube is presented in this paper, where the results for non-Newtonian fluids are shown.
Abstract: Taylor’s analyses of the dispersion of Newtonian fluids in laminar flow in a circular tube are extended to the flow of the Bingham plastic and Ellis model fluid. The previous results for the Newtonian fluid and power-low fluid can be deduced from the results of this work. It is indicated that Aris’s modification of Taylor’s analyses can be naturally applied to the non-Newtonian fluid. Results obtained for laminar flow between two parallel plane walls are given in the appendix.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a concise rheological and statistical evaluation of a novel super lightweight completion fluid (SLWCF) and the effect of temperature on its viscosity.

34 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
82% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Boundary layer
64.9K papers, 1.4M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202341
202295
202117
202022
201920
201836