scispace - formally typeset
Search or ask a question
Topic

Herschel–Bulkley fluid

About: Herschel–Bulkley fluid is a research topic. Over the lifetime, 1946 publications have been published within this topic receiving 49318 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an analytical solution of the equation of motion for the axial flow of an incompressible viscoplastic fluid (represented by the Hershel-Bulkley equation) in a long concentric annulus under isothermal, fully developed, and creeping conditions and subject to true or apparent wall slip is provided.
Abstract: The flow of non-Newtonian fluids in annular geometries is an important problem, especially for the extrusion of polymeric melts and suspensions and for oil and gas exploration. Here, an analytical solution of the equation of motion for the axial flow of an incompressible viscoplastic fluid (represented by the Hershel–Bulkley equation) in a long concentric annulus under isothermal, fully developed, and creeping conditions and subject to true or apparent wall slip is provided. The simplifications of the analytical model for Hershel–Bulkley fluid subject to wall slip also provide the analytical solutions for the axial annular flows of Bingham plastic, power-law, and Newtonian fluids with and without wall slip at one or both surfaces of the annulus.

32 citations

Journal ArticleDOI
01 Mar 2015
TL;DR: In this paper, a more realistic model for the carbon nanotube conveying viscous fluid which is embedded in a visco-elastic medium, the effect of viscosity of the medium surrounding the CNT has been investigated.
Abstract: In this paper, considering a more realistic model for the carbon nanotube (CNT) conveying viscous fluid which is embedded in a visco-elastic medium, the effect of viscosity of the medium surrounding the CNT has been investigated. By taking into account the influence of the fluid viscosity and using the Navier-Stokes equations, the governing equation of motion has been derived and a new analytical technique based on the power series is presented for its vibration analysis. The frequency equation of the system is obtained by applying the boundary conditions. The influence of the medium parameters and the fluid viscosity on the natural frequencies of the CNT has been studied. The results show that the medium damping has a marked effect on the natural frequencies and the critical fluid velocity. Furthermore, by increasing the fluid viscosity, the natural frequencies and the critical fluid velocity increase. There is a good agreement between the results obtained through the proposed method and the data reporte...

32 citations

Journal ArticleDOI
TL;DR: In this paper, a simple analytic expression for the fluid reaction is obtained for high values of the dimensionless parameter β, which is the frequency times the length of the plate squared divided by the kinematic viscosity.

32 citations

Journal ArticleDOI
TL;DR: In this paper, the Fourier transform is used to determine the motion of a viscous fluid between two side walls perpendicular to a plate by applying an oscillating shear stress to the fluid.
Abstract: The velocity field corresponding to the unsteady motion of a viscous fluid between two side walls perpendicular to a plate is determined by means of the Fourier transforms. The motion of the fluid is produced by the plate which after the time t = 0, applies an oscillating shear stress to the fluid. The solutions that have been obtained, presented as a sum of the steady-state and transient solutions satisfy the governing equation and all imposed initial and boundary conditions. In the absence of the side walls they are reduced to the similar solutions corresponding to the motion over an infinite plate. Finally, the influence of the side walls on the fluid motion, the required time to reach the steady-state, as well as the distance between the walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence, are established by means of graphical illustrations.

32 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
82% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Boundary layer
64.9K papers, 1.4M citations
81% related
Thermal conductivity
72.4K papers, 1.4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202341
202295
202117
202022
201920
201836