Topic
Heterogeneous catalysis
About: Heterogeneous catalysis is a(n) research topic. Over the lifetime, 22285 publication(s) have been published within this topic receiving 835391 citation(s).
Papers
More filters
TL;DR: The active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) is determined by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution.
Abstract: The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By preparing MoS2 nanoparticles of different sizes, we systematically varied the distribution of surface sites on MoS2 nanoparticles on Au(111), which we quantified with scanning tunneling microscopy. Electrocatalytic activity measurements for hydrogen evolution correlate linearly with the number of edge sites on the MoS2 catalyst.
4,164 citations
10 Jul 1997-
TL;DR: This paper presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of characterization and activation of Solid Catalysts.
Abstract: Preparation of Solid Catalysts. Characterization of Solid Catalysts. Model Systems. Elementary Steps and Mechanisms. Kinetics and Transport Processes. Deactivation and Regeneration. Special Catalytic Systems. Laboratory Reactors. Reaction Engineering. Environmental Catalysis. Inorganic Reactions. Energy-related Catalysis. Organic Reactions.
4,157 citations
Abstract: The adsorption properties and reactivities of gold are summarized in terms of their size dependency from bulk to fine particles, clusters and atoms. The catalytic performances of gold markedly depend on dispersion, supports, and preparation methods. When gold is deposited on select metal oxides as hemispherical ultra-fine particles with diameters smaller than 5 run, it exhibits surprisingly high activities and/or selectivities in the combustion of CO and saturated hydrocarbons, the oxidation-decomposition of amines and organic halogenated compounds, the partial oxidation of hydrocarbons, the hydrogenation of carbon oxides, unsaturated carbonyl compounds, alkynes and alkadienes, and the reduction of nitrogen oxides. The unique catalytic nature of supported gold can be explained by assuming that the gold-metal oxide perimeter interface acts as a site for activating at least one of the reactants, for example, oxygen. Some examples and future prospects in applications are also briefly described.
3,743 citations
TL;DR: In conclusion, MOFs as Host Matrices or Nanometric Reaction Cavities should not be considered as a source of concern in the determination of MOFs’ properties in relation to other materials.
Abstract: 2.2. MOFs with Metal Active Sites 4614 2.2.1. Early Studies 4614 2.2.2. Hydrogenation Reactions 4618 2.2.3. Oxidation of Organic Substrates 4620 2.2.4. CO Oxidation to CO2 4626 2.2.5. Phototocatalysis by MOFs 4627 2.2.6. Carbonyl Cyanosilylation 4630 2.2.7. Hydrodesulfurization 4631 2.2.8. Other Reactions 4632 2.3. MOFs with Reactive Functional Groups 4634 2.4. MOFs as Host Matrices or Nanometric Reaction Cavities 4636
2,895 citations
TL;DR: The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.
Abstract: Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.
2,628 citations