scispace - formally typeset
Search or ask a question
Topic

Heterogeneous network

About: Heterogeneous network is a research topic. Over the lifetime, 19635 publications have been published within this topic receiving 316561 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security, and opportunities depend on development of a scalable, low-cost, sensor-network architecture.
Abstract: W ireless integrated network sensors (WINS) provide distributed network and Internet access to sensors, controls, and processors deeply embedded in equipment, facilities, and the environment. The WINS network represents a new monitoring and control capability for applications in such industries as transportation, manufacturing, health care, environmental oversight, and safety and security. WINS combine microsensor technology and low-power signal processing, computation, and low-cost wireless networking in a compact system. Recent advances in integrated circuit technology have enabled construction of far more capable yet inexpensive sensors, radios, and processors, allowing mass production of sophisticated systems linking the physical world to digital data networks [2–5]. Scales range from local to global for applications in medicine, security, factory automation, environmental monitoring, and condition-based maintenance. Compact geometry and low cost allow WINS to be embedded and distributed at a fraction of the cost of conventional wireline sensor and actuator systems. WINS opportunities depend on development of a scalable, low-cost, sensor-network architecture. Such applications require delivery of sensor information to the user at a low bit rate through low-power transceivers. Continuous sensor signal processing enables the constant monitoring of events in an environment in which short message packets would suffice. Future applications of distributed embedded processors and sensors will require vast numbers of devices. Conventional methods of sensor networking represent an impractical demand on cable installation and network bandwidth. Processing at the source would drastically reduce the financial, computational, and management burden on communication system

3,415 citations

Proceedings ArticleDOI
01 Aug 1999
TL;DR: It is found that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches, and that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.
Abstract: In this paper, we present a family of adaptive protocols, called SPIN (Sensor Protocols for Information via Negotiation), that efficiently disseminates information among sensors in an energy-constrained wireless sensor network. Nodes running a SPIN communication protocol name their data using high-level data descriptors, called meta-data. They use meta-data negotiations to eliminate the transmission of redundant data throughout the network. In addition, SPIN nodes can base their communication decisions both upon application-specific knowledge of the data and upon knowledge of the resources that are available to them. This allows the sensors to efficiently distribute data given a limited energy supply. We simulate and analyze the performance of two specific SPIN protocols, comparing them to other possible approaches and a theoretically optimal protocol. We find that the SPIN protocols can deliver 60% more data for a given amount of energy than conventional approaches. We also find that, in terms of dissemination rate and energy usage, the SPlN protocols perform close to the theoretical optimum.

2,525 citations

Journal ArticleDOI
05 Feb 2014
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.

2,452 citations

Journal ArticleDOI
TL;DR: The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput, and the gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.
Abstract: This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work on network coding is mainly theoretical and focuses on multicast traffic. This paper aims to bridge theory with practice; it addresses the common case of unicast traffic, dynamic and potentially bursty flows, and practical issues facing the integration of network coding in the current network stack. We evaluate our design on a 20-node wireless network, and discuss the results of the first testbed deployment of wireless network coding. The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput. The gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.

2,190 citations

Proceedings ArticleDOI
04 Aug 2017
TL;DR: Two scalable representation learning models, namely metapath2vec and metapATH2vec++, are developed that are able to not only outperform state-of-the-art embedding models in various heterogeneous network mining tasks, but also discern the structural and semantic correlations between diverse network objects.
Abstract: We study the problem of representation learning in heterogeneous networks. Its unique challenges come from the existence of multiple types of nodes and links, which limit the feasibility of the conventional network embedding techniques. We develop two scalable representation learning models, namely metapath2vec and metapath2vec++. The metapath2vec model formalizes meta-path-based random walks to construct the heterogeneous neighborhood of a node and then leverages a heterogeneous skip-gram model to perform node embeddings. The metapath2vec++ model further enables the simultaneous modeling of structural and semantic correlations in heterogeneous networks. Extensive experiments show that metapath2vec and metapath2vec++ are able to not only outperform state-of-the-art embedding models in various heterogeneous network mining tasks, such as node classification, clustering, and similarity search, but also discern the structural and semantic correlations between diverse network objects.

1,794 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
97% related
Wireless ad hoc network
49K papers, 1.1M citations
96% related
Network packet
159.7K papers, 2.2M citations
96% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
94% related
Wireless
133.4K papers, 1.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023161
2022369
2021627
2020902
20191,067
20181,076