scispace - formally typeset
Search or ask a question

Showing papers on "Heterogeneous network published in 2014"


Journal ArticleDOI
05 Feb 2014
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.

2,452 citations


Journal ArticleDOI
TL;DR: Self-interference cancellation offers the potential to complement and sustain the evolution of 5G technologies toward denser heterogeneous networks and can be utilized in wireless communication systems in multiple ways, including increased link capacity, spectrum virtualization, any-division duplexing (ADD), novel relay solutions, and enhanced interference coordination.
Abstract: Self-interference cancellation invalidates a long-held fundamental assumption in wireless network design that radios can only operate in half duplex mode on the same channel. Beyond enabling true in-band full duplex, which effectively doubles spectral efficiency, self-interference cancellation tremendously simplifies spectrum management. Not only does it render entire ecosystems like TD-LTE obsolete, it enables future networks to leverage fragmented spectrum, a pressing global issue that will continue to worsen in 5G networks. Self-interference cancellation offers the potential to complement and sustain the evolution of 5G technologies toward denser heterogeneous networks and can be utilized in wireless communication systems in multiple ways, including increased link capacity, spectrum virtualization, any-division duplexing (ADD), novel relay solutions, and enhanced interference coordination. By virtue of its fundamental nature, self-interference cancellation will have a tremendous impact on 5G networks and beyond.

751 citations


Journal ArticleDOI
TL;DR: An overview of WBAN main applications, technologies and standards, issues in WBANs design, and evolutions is reported, with the aim of providing useful insights for WBAN designers and of highlighting the main issues affecting the performance of these kind of networks.
Abstract: Interest in Wireless Body Area Networks (WBANs) has increased significantly in recent years thanks to the advances in microelectronics and wireless communications. Owing to the very stringent application requirements in terms of reliability, energy efficiency, and low device complexity, the design of these networks requires the definition of new protocols with respect to those used in general purpose wireless sensor networks. This motivates the effort in research activities and in standardisation process of the last years. This survey paper aims at reporting an overview of WBAN main applications, technologies and standards, issues in WBANs design, and evolutions. Some case studies are reported, based on both real implementation and experimentation on the field, and on simulations. These results have the aim of providing useful insights for WBAN designers and of highlighting the main issues affecting the performance of these kind of networks.

597 citations


Journal ArticleDOI
TL;DR: It is estimated that the main driver of capacity growth is expected to come from network architecture advancements, with heterogeneous networks and convergence of information and communication technology being two of the key techniques.
Abstract: It has been projected that, in the next decade, a mobile traffic increase on the order of 1,000 times is expected compared to what we experience today. To meet that dramatic traffic growth, next-generation mobile networks are also expected to achieve a 1,000-fold capacity increase compared to the current generation of wireless network deployments. In this article, we discuss how such capacity growth could be achieved in a ten-year time frame. We discuss the techniques that we expect to have the highest opportunity for increasing the system capacity and estimate their gains based on analysis and simulation. We observe that the main driver of capacity growth is expected to come from network architecture advancements, with heterogeneous networks and convergence of information and communication technology being two of the key techniques. We also estimate that the air-interface evolution would focus not only on improving the link and system spectrum efficiency but also on facilitating the required network efficiency improvements. This article provides insights into the communication technology evolution and can be used as a guideline for technology development toward the fifth generation (5G).

556 citations


Journal ArticleDOI
TL;DR: It is explained how several long-standing assumptions about cellular networks need to be rethought in the context of a load-balanced HetNet: these are highlighted as three deeply entrenched myths that are then dispel.
Abstract: Matching the demand for resources (?load?) with the supply of resources (?capacity?) is a basic problem occurring across many fields of engineering, logistics, and economics, and has been considered extensively in both the Internet and wireless networks. The ongoing evolution of cellular communication networks into dense, organic, and irregular heterogeneous networks (HetNets) has elevated load awareness to a central problem, and introduces many new subtleties. This article explains how several long-standing assumptions about cellular networks need to be rethought in the context of a load-balanced HetNet: we highlight these as three deeply entrenched myths that we then dispel. We survey and compare the primary technical approaches to HetNet load balancing: (centralized) optimization, game theory, Markov decision processes, and the newly popular cell range expansion (a.k.a. biasing), and draw design lessons for OFDMA-based cellular systems. We also identify several open areas for future exploration.

524 citations


Journal ArticleDOI
TL;DR: The presented wireless system framework is expected to advance the understandings of the critical technical issues toward energy and spectrum efficient 5G wireless communication systems.
Abstract: In this article we explore a system framework of cooperative green heterogeneous networks for 5G wireless communication systems. We first survey the state-of-the-art on spectrum efficiency (SE), energy efficiency (EE), and quality of service (QoS) based mobile association, multi-layer interference management and power control, network wide cooperation and dynamic resource allocation for heterogeneous wireless networks. We also present the system framework of cooperative green heterogeneous networks, which aims at balancing and optimizing SE, EE, and QoS in heterogeneous wireless networks. We discuss the design principles and show some preliminary performance results on the tradeoffs among SE, EE, and QoS. Finally, we identify the technical challenges that remain in the cooperative green heterogeneous network design. The presented wireless system framework is expected to advance the understandings of the critical technical issues toward energy and spectrum efficient 5G wireless communication systems.

410 citations


Journal ArticleDOI
TL;DR: It is shown that load balancing is insufficient, and resource partitioning is required in conjunction with offloading to improve the rate of cell edge users in co-channel heterogeneous networks.
Abstract: In heterogeneous cellular networks (HCNs), it is desirable to offload mobile users to small cells, which are typically significantly less congested than the macrocells. To achieve sufficient load balancing, the offloaded users often have much lower SINR than they would on the macrocell. This SINR degradation can be partially alleviated through interference avoidance, for example time or frequency resource partitioning, whereby the macrocell turns off in some fraction of such resources. Naturally, the optimal offloading strategy is tightly coupled with resource partitioning; the optimal amount of which in turn depends on how many users have been offloaded. In this paper, we propose a general and tractable framework for modeling and analyzing joint resource partitioning and offloading in a two-tier cellular network. With it, we are able to derive the downlink rate distribution over the entire network, and an optimal strategy for joint resource partitioning and offloading. We show that load balancing, by itself, is insufficient, and resource partitioning is required in conjunction with offloading to improve the rate of cell edge users in co-channel heterogeneous networks.

375 citations


Posted Content
TL;DR: In this article, state-of-the-art research achievements and challenges on heterogeneous cloud radio access networks (H-CRANs) are surveyed, in particular, issues of system architectures, spectral and energy efficiency performances, and promising key techniques.
Abstract: To mitigate the severe inter-tier interference and enhance limited cooperative gains resulting from the constrained and non-ideal transmissions between adjacent base stations in heterogeneous networks (HetNets), heterogeneous cloud radio access networks (H-CRANs) are proposed as cost-efficient potential solutions through incorporating the cloud computing into HetNets. In this article, state-of-the-art research achievements and challenges on H-CRANs are surveyed. In particular, we discuss issues of system architectures, spectral and energy efficiency performances, and promising key techniques. A great emphasis is given towards promising key techniques in H-CRANs to improve both spectral and energy efficiencies, including cloud computing based coordinated multi-point transmission and reception, large-scale cooperative multiple antenna, cloud computing based cooperative radio resource management, and cloud computing based self-organizing network in the cloud converging scenarios. The major challenges and open issues in terms of theoretical performance with stochastic geometry, fronthaul constrained resource allocation, and standard development that may block the promotion of H-CRANs are discussed as well.

366 citations


Journal ArticleDOI
TL;DR: The basic concepts of D2D communications are first introduced, and then existing fundamental works on D2d communications are discussed and some potential research topics and challenges are identified.
Abstract: Device-to-device communications enable two proximity users to transmit signal directly without going through the base station. It can increase network spectral efficiency and energy efficiency, reduce transmission delay, offload traffic for the BS, and alleviate congestion in the cellular core networks. However, many technical challenges need to be addressed for D2D communications to harvest the potential benefits, including device discovery and D2D session setup, D2D resource allocation to guarantee QoS, D2D MIMO transmission, as well as D2D-aided BS deployment in heterogeneous networks. In this article, the basic concepts of D2D communications are first introduced, and then existing fundamental works on D2D communications are discussed. In addition, some potential research topics and challenges are also identified.

343 citations


Journal ArticleDOI
TL;DR: Numerical evaluations illustrate absolute gains in coverage probability for the general user and the worst case user compared with the noncooperative case and it is shown that no diversity gain is achieved using noncoherent joint transmission, whereas full diversity gain can be achieved at the receiver if the transmitting base stations have channel state information.
Abstract: Motivated by the ongoing discussion on coordinated multipoint in wireless cellular standard bodies, this paper considers the problem of base station cooperation in the downlink of heterogeneous cellular networks. The focus of this paper is the joint transmission scenario, where an ideal backhaul network allows a set of randomly located base stations, possibly belonging to different network tiers, to jointly transmit data, to mitigate intercell interference and hence improve coverage and spectral efficiency. Using tools from stochastic geometry, an integral expression for the network coverage probability is derived in the scenario where the typical user located at an arbitrary location, i.e., the general user, receives data from a pool of base stations that are selected based on their average received power levels. An expression for the coverage probability is also derived for the typical user located at the point equidistant from three base stations, which we refer to as the worst case user. In the special case where cooperation is limited to two base stations, numerical evaluations illustrate absolute gains in coverage probability of up to 17% for the general user and 24% for the worst case user compared with the noncooperative case. It is also shown that no diversity gain is achieved using noncoherent joint transmission, whereas full diversity gain can be achieved at the receiver if the transmitting base stations have channel state information.

321 citations


Journal ArticleDOI
Abstract: The success of LTE heterogeneous networks (HetNets) with macrocells and picocells critically depends on efficient spectrum sharing between high-power macros and low-power picos. Two important challenges in this context are: 1) determining the amount of radio resources that macrocells should offer to picocells, and 2) determining the association rules that decide which user equipments (UEs) should associate with picos. In this paper, we develop a novel algorithm to solve these two coupled problems in a joint manner. Our algorithm has provable guarantee, and furthermore, it accounts for network topology, traffic load, and macro-pico interference map. Our solution is standard compliant and can be implemented using the notion of Almost Blank Subframes (ABS) and Cell Selection Bias (CSB) proposed by LTE standards. We also show extensive evaluations using RF plan from a real network and discuss self-optimized networking (SON)-based enhanced inter-cell interference coordination (eICIC) implementation.

Journal ArticleDOI
TL;DR: This paper proposes a computational framework based on a heterogeneous network model and applied the approach on drug repositioning by using existing omics data about diseases, drugs and drug targets and shows that the proposed approach significantly outperforms several recent approaches.
Abstract: Motivation: The emergence of network medicine not only offers more opportunities for better and more complete understanding of the molecular complexities of diseases, but also serves as a promising tool for identifying new drug targets and establishing new relationships among diseases that enable drug repositioning. Computational approaches for drug repositioning by integrating information from multiple sources and multiple levels have the potential to provide great insights to the complex relationships among drugs, targets, disease genes and diseases at a system level. Results: In this article, we have proposed a computational framework based on a heterogeneous network model and applied the approach on drug repositioning by using existing omics data about diseases, drugs and drug targets. The novelty of the framework lies in the fact that the strength between a disease–drug pair is calculated through an iterative algorithm on the heterogeneous graph that also incorporates drug-target information. Comprehensive experimental results show that the proposed approach significantly outperforms several recent approaches. Case studies further illustrate its practical usefulness. Availability and implementation: http://cbc.case.edu Contact: ude.urwc@ilgnij Supplementary information: Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
TL;DR: D2D technical challenges as well as standards progress and important research aspects that enable D2D communications underlaying cellular networks are discussed.
Abstract: Device-to-device communication underlaying a cellular network is a promising technology in future wireless networks to improve network capacity and user experience. While D2D communication has great potential to improve wireless system spectral and energy efficiency due to the proximity of communication parties and higher spectrum reuse gain, tremendous work is still ongoing to turn the promising technology into a reality. This article discusses D2D technical challenges as well as standards progress and important research aspects that enable D2D communications underlaying cellular networks. The key research areas addressed include interference management, multihop D2D communications, and D2D communications in heterogeneous networks. When enabling D2D communications underlaying cellular networks, D2D communications can use either cellular downlink or cellular uplink resources. The two resource sharing modes will create different interference scenarios. The performance evaluation on D2D communications underlaying cellular networks under these two different scenarios is provided.

Journal ArticleDOI
TL;DR: Empirical studies show that HeteSim can effectively and efficiently evaluate the relatedness of heterogeneous objects, which is crucial to many data mining tasks.
Abstract: Similarity search is an important function in many applications, which usually focuses on measuring the similarity between objects with the same type. However, in many scenarios, we need to measure the relatedness between objects with different types. With the surge of study on heterogeneous networks, the relevance measure on objects with different types becomes increasingly important. In this paper, we study the relevance search problem in heterogeneous networks, where the task is to measure the relatedness of heterogeneous objects (including objects with the same type or different types). A novel measure HeteSim is proposed, which has the following attributes: (1) a uniform measure: it can measure the relatedness of objects with the same or different types in a uniform framework; (2) a path-constrained measure: the relatedness of object pairs are defined based on the search path that connects two objects through following a sequence of node types; (3) a semi-metric measure: HeteSim has some good properties (e.g., selfmaximum and symmetric), which are crucial to many data mining tasks. Moreover, we analyze the computation characteristics of HeteSim and propose the corresponding quick computation strategies. Empirical studies show that HeteSim can effectively and efficiently evaluate the relatedness of heterogeneous objects.

Journal ArticleDOI
TL;DR: In this article, an energy-efficient optimization problem with the resource assignment and power allocation for the orthogonal frequency division multiple access (OFDMA) based heterogeneous cloud radio access networks (H-CRANs) is formulated as a nonconvex objective function.
Abstract: Taking full advantages of both heterogeneous networks (HetNets) and cloud access radio access networks (CRANs), heterogeneous cloud radio access networks (H-CRANs) are presented to enhance both the spectral and energy efficiencies, where remote radio heads (RRHs) are mainly used to provide high data rates for users with high quality of service (QoS) requirements, while the high power node (HPN) is deployed to guarantee the seamless coverage and serve users with low QoS requirements. To mitigate the inter-tier interference and improve EE performances in H-CRANs, characterizing user association with RRH/HPN is considered in this paper, and the traditional soft fractional frequency reuse (S-FFR) is enhanced. Based on the RRH/HPN association constraint and the enhanced S-FFR, an energy-efficient optimization problem with the resource assignment and power allocation for the orthogonal frequency division multiple access (OFDMA) based H-CRANs is formulated as a non-convex objective function. To deal with the non-convexity, an equivalent convex feasibility problem is reformulated, and closedform expressions for the energy-efficient resource allocation solution to jointly allocate the resource block and transmit power are derived by the Lagrange dual decomposition method. Simulation results confirm that the H-CRAN architecture and the corresponding resource allocation solution can enhance the energy efficiency significantly.

Journal ArticleDOI
TL;DR: An overview of the active research initiatives in the area of handover decision making process in heterogeneous wireless networks is given and the challenges behind the seamless services provisioning during mobility are identified.
Abstract: Wireless networks are passing through a transition phase for the past few years now and this transition is giving a way towards the convergence of all IP-based networks to form the Next Generation Networks (NGNs). With the proliferation of these networks in daily life, users' needs are also increasing and service operators are offering different services to satisfy their customers for a better grade of service and an elevated quality of experience (QoE). However, a single operator cannot fulfill the huge demands of the users especially, if a user is nomadic. In nomadism, a user traverses number of available networks that might contain cellular or wireless data networks, usually known as heterogeneous wireless networks. These networks offer various services from email to live video streaming depending upon their capacity and nature. During this traversing procedure, a user switches among different networks to satisfy his/her needs in terms of quality of service. This process is commonly known as a vertical handover or handoff (VHO) due to the involvement of heterogeneous wireless networks in it. An extensive work has been carried out in this field in order to fulfill user demands for better QoS and QoE. In this paper, we give a detailed state-of-the-art of these existing vertical handover decision mechanisms that aim at providing ubiquitous connectivity to the mobile users. We have categorized these vertical handover measurement and decision schemes on the basis of their employed techniques and parameters. Also, we present a comprehensive summary of their advantages and drawbacks. This paper gives its readers an overview of the active research initiatives in the area of handover decision making process in heterogeneous wireless networks and identifies the challenges behind the seamless services provisioning during mobility.

Journal ArticleDOI
TL;DR: The proposed QoS-aware scheduling for service-oriented IoT architecture is able to optimize the scheduling performance of IoT network and minimize the resource costs.
Abstract: The Internet of Things (IoT) contains a large number of different devices and heterogeneous networks, which make it difficult to satisfy different quality of service (QoS) requirements and achieve rapid services composition and deployment In addition, some services in service-oriented IoT are required to be reconfigurable and composable for QoS-aware services This paper proposed a three-layer QoS scheduling model for service-oriented IoT At application layer, the QoS schedule scheme explores optimal QoS-aware services composition by using the knowledge of each component service At network layer, the model aims at dealing with scheduling of heterogeneous networks environment; at sensing layer, it deals with the information acquisition and resource allocation scheduling for different services The proposed QoS-aware scheduling for service-oriented IoT architecture is able to optimize the scheduling performance of IoT network and minimize the resource costs

Journal ArticleDOI
TL;DR: The novel observation that attribute inference can help inform link prediction, that is, link-prediction accuracy is further improved by first inferring missing attributes, is made.
Abstract: The effects of social influence and homophily suggest that both network structure and node-attribute information should inform the tasks of link prediction and node-attribute inference. Recently, Yin et al. [2010a, 2010b] proposed an attribute-augmented social network model, which we call Social-Attribute Network (SAN), to integrate network structure and node attributes to perform both link prediction and attribute inference. They focused on generalizing the random walk with a restart algorithm to the SAN framework and showed improved performance. In this article, we extend the SAN framework with several leading supervised and unsupervised link-prediction algorithms and demonstrate performance improvement for each algorithm on both link prediction and attribute inference. Moreover, we make the novel observation that attribute inference can help inform link prediction, that is, link-prediction accuracy is further improved by first inferring missing attributes. We comprehensively evaluate these algorithms and compare them with other existing algorithms using a novel, large-scale Google+ dataset, which we make publicly available (http://www.cs.berkeley.edu/~stevgong/gplus.html).

Proceedings ArticleDOI
01 Dec 2014
TL;DR: In this paper, the authors study the downlink and Uplink decoupling in heterogeneous networks where the uplink and downlink cell association is based on the received power while the UL path loss is calculated.
Abstract: Cell association in cellular networks has traditionally been based on the downlink received signal power only, despite the fact that uplink and downlink transmission powers and interference levels differed significantly. This approach was adequate in homogeneous networks with macro base stations all having similar transmission power levels. However, with the growth of heterogeneous networks where there is a big disparity in the transmit power of the different base station types, this approach is highly inefficient. In this paper, we study the notion of Downlink and Uplink Decoupling (DUDe) where the downlink cell association is based on the downlink received power while the uplink is based on the pathloss. We present the motivation and assess the gains of this 5G design approach with simulations that are based on Vodafone's LTE field trial network in a dense urban area, employing a high resolution ray-tracing pathloss prediction and realistic traffic maps based on live network measurements.

Journal ArticleDOI
TL;DR: The approach is to classify existing contemporary wireless intrusion detection system (IDS) techniques based on target wireless network, detection technique, collection process, trust model and analysis technique.

Patent
14 Jul 2014
TL;DR: In this paper, a system for selecting a deselecting charging device in a wireless power network is described, which includes a graphical user interface from which a user may select or deselect devices to be charged in a WPCN.
Abstract: A system for selecting a deselecting charging devices in a wireless power network is disclosed here. The system includes a graphical user interface from which a user may select or deselect devices to be charged in a wireless power network. The disclosed system may store records from different components of a wireless power network into a database distributed throughout said network with copies stored within the memory of wireless power transmitters.

Patent
14 Jul 2014
TL;DR: In this paper, a system for managing power charging schedules in a wireless power network is described, which includes a graphical user interface from which a user may perform scheduling functions in wireless power networks.
Abstract: A system for managing power charging schedules in a wireless power network is disclosed here. The system includes a graphical user interface from which a user may perform scheduling functions in a wireless power network. The disclosed system may store power scheduling records in a database within a wireless power transmitter or other computers in a wireless power network. The wireless power transmitter may use scheduling records in the database to control when to transmit wireless power to a single power receivers or simultaneously to multiple power receivers.

Journal ArticleDOI
TL;DR: In this paper, the problem of joint cell association and wireless backhaul bandwidth allocation in two-tier cellular heterogeneous networks (HetNets) is considered, where a duplex and spectrum sharing scheme based on co-channel reverse time-division duplex (TDD) and dynamic soft frequency reuse (SFR) is proposed for interference management in HetNs with large-scale antenna arrays at the macro BS and single-antenna BSs.
Abstract: The problem of joint downlink cell association (CA) and wireless backhaul bandwidth allocation (WBBA) in two-tier cellular heterogeneous networks (HetNets) is considered. Large-scale antenna array is implemented at the macro base station (BS), while the small cells within the macro cell range are single-antenna BSs and they rely on over-the-air links to the macro BS for backhauling. A sum logarithmic user rate maximization problem is investigated considering wireless backhauling constraints. A duplex and spectrum sharing scheme based on co-channel reverse time-division duplex (TDD) and dynamic soft frequency reuse (SFR) is proposed for interference management in two-tier HetNets with large-scale antenna arrays at the macro BS and wireless backhauling for small cells. Two in-band WBBA scenarios, namely, unified bandwidth allocation and per-small-cell bandwidth allocation scenarios, are investigated for joint CA-WBBA in the HetNet. A two-level hierarchical decomposition method for relaxed optimization is employed to solve the mixed-integer nonlinear program (MINLP). Solutions based on the General Algorithm Modeling System (GAMS) optimization solver and fast heuristics are also proposed for cell association in the per-small-cell WBBA scenario. It is shown that when all small cells have to use in-band wireless backhaul, the system load has more impact on both the sum log-rate and per-user rate performance than the number of small cells deployed within the macro cell range. The proposed joint CA-WBBA algorithms have an optimal load approximately equal to the size of the large-scale antenna array at the macro BS. The cell range expansion (CRE) strategy, which is an efficient cell association scheme for HetNets with perfect backhauling, is shown to be inefficient when in-band wireless backhauling for small cells comes into play.

Proceedings ArticleDOI
01 Jun 2014
TL;DR: The main 5G technologies are presented and the network and device evolution towards 5G is discussed, including higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), and use of very large Multiple Input Multiple Output (MIMO) arrays.
Abstract: The proliferation of smart devices and the resulting exponential growth in data traffic has increased the need for higher capacity wireless networks. The cellular systems industry is envisioning an increase in network capacity by a factor of 1000 over the next decade to meet this traffic demand. In addition, with the emergence of Internet of Things (IoT), billions of devices will be connected and managed by wireless networks. Future networks must satisfy the above mentioned requirements with high energy efficiency and at low cost. Hence, the industry attention is now shifting towards the next set of innovations in architecture and technologies that will address capacity and service demands envisioned for 2020, which cannot be met only with the evolution of 4G systems. These innovations are expected to form the so called fifth generation wireless communications systems, or 5G. Candidate 5G solutions include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of very large Multiple Input Multiple Output (MIMO) arrays, iii) use of millimeter Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, and v) simultaneous transmission and reception, among others. In this paper, we present the main 5G technologies. We also discuss the network and device evolution towards 5G.

Journal ArticleDOI
TL;DR: A statistical framework to evaluate the performance of multi-tier heterogeneous networks with successive interference cancellation (SIC) capabilities is developed, accounting for the computational complexity of the cancellation scheme and relevant network related parameters such as random location of the access points and mobile users, and the characteristics of the wireless propagation channel.
Abstract: At present, operators address the explosive growth of mobile data demand by densification of the cellular network so as to reduce the transmitter-receiver distance and to achieve higher spectral efficiency. Due to such network densification and the intense proliferation of wireless devices, modern wireless networks are interference-limited, which motivates the use of interference mitigation and coordination techniques. In this work, we develop a statistical framework to evaluate the performance of multi-tier heterogeneous networks with successive interference cancellation (SIC) capabilities, accounting for the computational complexity of the cancellation scheme and relevant network related parameters such as random location of the access points (APs) and mobile users, and the characteristics of the wireless propagation channel. We explicitly model the consecutive events of canceling interferers and we derive the success probability to cancel the $n$ -th strongest signal and to decode the signal of interest after $n$ cancellations. When users are connected to the AP which provides the maximum average received signal power, the analysis indicates that the performance gains of SIC diminish quickly with $n$ and the benefits are modest for realistic values of the signal-to-interference ration (SIR). We extend the statistical model to include several association policies where distinct gains of SIC are expected: (i) maximum instantaneous SIR association, (ii) minimum load association, and (iii) range expansion. Numerical results show the effectiveness of SIC for the considered association policies. This work deepens the understanding of SIC by defining the achievable gains for different association policies in multi-tier heterogeneous networks.

Proceedings ArticleDOI
24 Aug 2014
TL;DR: This paper presents Non-Parametric Heterogeneous Graph Scan (NPHGS), a new approach that considers the entire heterogeneous network for event detection and efficiently maximize a nonparametric scan statistic over connected subgraphs to identify the most anomalous network clusters.
Abstract: Event detection in social media is an important but challenging problem Most existing approaches are based on burst detection, topic modeling, or clustering techniques, which cannot naturally model the implicit heterogeneous network structure in social media As a result, only limited information, such as terms and geographic locations, can be used This paper presents Non-Parametric Heterogeneous Graph Scan (NPHGS), a new approach that considers the entire heterogeneous network for event detection: we first model the network as a "sensor" network, in which each node senses its "neighborhood environment" and reports an empirical p-value measuring its current level of anomalousness for each time interval (eg, hour or day) Then, we efficiently maximize a nonparametric scan statistic over connected subgraphs to identify the most anomalous network clusters Finally, the event represented by each cluster is summarized with information such as type of event, geographical locations, time, and participants As a case study, we consider two applications using Twitter data, civil unrest event detection and rare disease outbreak detection, and present empirical evaluations illustrating the effectiveness and efficiency of our proposed approach

Journal ArticleDOI
TL;DR: This work derives the success probability, spatial average rate, and area spectral efficiency performances for both cellular users and D2D users by taking into account the different channel propagations that they experience by employing stochastic geometry as an analysis framework to derive closed-form expressions for above performance metrics.
Abstract: Using Device-to-device (D2D) communications in a cellular network is an economical and effective approach to increase the transmission data rate and extend the coverage. Nevertheless, the D2D underlaid cellular network is challenging due to the presence of inter-tier and intra-tier interferences. With necessarily lower antenna heights in D2D communication links, the fading channels are likely to contain strong line-of-sight components, which are different from the Rayleigh fading distribution in conventional two-tier heterogeneous networks. In this paper, we derive the success probability, spatial average rate, and area spectral efficiency performances for both cellular users and D2D users by taking into account the different channel propagations that they experience. Specifically, we employ stochastic geometry as an analysis framework to derive closed-form expressions for above performance metrics. Furthermore, to reduce cross-tier interferences and improve system performances, we propose a centralized opportunistic access control scheme as well as a mode selection mechanism. According to the analysis and simulations, we obtain interesting tradeoffs that depend on the effect of the channel propagation parameter, user node density, and the spectrum occupation ratio on the different performance metrics. This work highlights the importance of incorporating the suitable channel propagation model into the system design and analysis to obtain the realistic results and conclusions.

Posted Content
TL;DR: This paper characterize the network interference from FD-mode cells, and derive the HDHN throughput by accounting for AP spatial density, self-IC capability, and transmission power of APs and users, and shows the superiority of FD mode for larger AP densities or higher self-interference cancellation capability.
Abstract: Full-duplex (FD) radio has been introduced for bidirectional communications on the same temporal and spectral resources so as to maximize spectral efficiency. In this paper, motivated by the recent advances in FD radios, we provide a foundation for hybrid-duplex heterogeneous networks (HDHNs), composed of multi-tier networks with a mixture of access points (APs), operating either in bidirectional FD mode or downlink half-duplex (HD) mode. Specifically, we characterize the net- work interference from FD-mode cells, and derive the HDHN throughput by accounting for AP spatial density, self-interference cancellation (IC) capability, and transmission power of APs and users. By quantifying the HDHN throughput, we present the effect of network parameters and the self-IC capability on the HDHN throughput, and show the superiority of FD mode for larger AP densities (i.e., larger network interference and shorter communication distance) or higher self-IC capability. Furthermore, our results show operating all APs in FD or HD achieves higher throughput compared to the mixture of two mode APs in each tier network, and introducing hybrid-duplex for different tier networks improves the heterogenous network throughput.

Journal ArticleDOI
TL;DR: In this paper, the authors conducted measurements and capacity studies to assess the performance of adaptive beamforming and spatial multiplexing with a focus on small cell deployments in urban environments and found that even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low power micro- or picocell base station.
Abstract: Millimeter wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multi-element antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low power micro- or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures and carrier aggregation can be leveraged in the mmW context.

Journal ArticleDOI
TL;DR: This paper surveys the most important proposals, considering the two most common wireless access technologies, namely, cellular and WLAN, and analyses the main features of the proposed solutions, with an outlook on their applicability in typical network scenarios that also include cooperation between both access technologies.
Abstract: Traditionally, energy efficiency aspects have been included in the wireless access network design space only in the context of power control aimed at interference mitigation and for the increase of the terminal battery lifetime. Energy consumption of network components has also, for a long time, not been considered an issue, neither in equipment design nor in network planning and management. However, in recent years, with the user demand increasing at nearly exponential pace and margins rapidly shrinking, concerns about energy efficiency have been raised, with the objective of reducing network operational costs (not to mention the environmental issues). Installing more energy-efficient hardware does not seem to fully solve the problem, since wireless access networks are almost invariably (over)provisioned with respect to the peak user demand. This means that efficient resource management schemes, which are capable of controlling how much of the network infrastructure is actually needed and which parts can be temporarily powered off to save energy, can be extremely effective and provide quite large cost reductions. Considering that most of the energy in wireless access networks is consumed in the radio part, dynamic provisioning of wireless access network resources is crucial to achieving energy-efficient operation. The consensus on this approach in the research community has been wide in the last few years, and a large number of solutions have been proposed. In this paper, we survey the most important proposals, considering the two most common wireless access technologies, namely, cellular and WLAN. The main features of the proposed solutions are analyzed and compared, with an outlook on their applicability in typical network scenarios that also include cooperation between both access technologies. Moreover, we provide an overview of the practical implementation aspects that must be addressed to achieve truly energy-efficient wireless access networks, including current standardization work, and trends in the development of energy-efficient hardware.