scispace - formally typeset
Search or ask a question
Topic

Heuristics

About: Heuristics is a research topic. Over the lifetime, 32188 publications have been published within this topic receiving 956539 citations.


Papers
More filters
Book
01 Jan 1974
TL;DR: The authors described three heuristics that are employed in making judgements under uncertainty: representativeness, availability of instances or scenarios, and adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available.
Abstract: This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.

31,082 citations

Journal ArticleDOI
TL;DR: jModelTest 2: more models, new heuristics and parallel computing Diego Darriba, Guillermo L. Taboada, Ramón Doallo and David Posada.
Abstract: jModelTest 2: more models, new heuristics and parallel computing Diego Darriba, Guillermo L. Taboada, Ramón Doallo and David Posada Supplementary Table 1. New features in jModelTest 2 Supplementary Table 2. Model selection accuracy Supplementary Table 3. Mean square errors for model averaged estimates Supplementary Note 1. Hill-climbing hierarchical clustering algorithm Supplementary Note 2. Heuristic filtering Supplementary Note 3. Simulations from prior distributions Supplementary Note 4. Speed-up benchmark on real and simulated datasets

13,100 citations

Book
01 Jan 1992
TL;DR: GAs and Evolution Programs for Various Discrete Problems, a Hierarchy of Evolution Programs and Heuristics, and Conclusions.
Abstract: 1 GAs: What Are They?.- 2 GAs: How Do They Work?.- 3 GAs: Why Do They Work?.- 4 GAs: Selected Topics.- 5 Binary or Float?.- 6 Fine Local Tuning.- 7 Handling Constraints.- 8 Evolution Strategies and Other Methods.- 9 The Transportation Problem.- 10 The Traveling Salesman Problem.- 11 Evolution Programs for Various Discrete Problems.- 12 Machine Learning.- 13 Evolutionary Programming and Genetic Programming.- 14 A Hierarchy of Evolution Programs.- 15 Evolution Programs and Heuristics.- 16 Conclusions.- Appendix A.- Appendix B.- Appendix C.- Appendix D.- References.

12,212 citations

Journal ArticleDOI
TL;DR: Three heuristics that are employed in making judgements under uncertainty are described: representativeness, availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development.

5,935 citations

Proceedings ArticleDOI
24 Aug 2003
TL;DR: An analysis framework based on submodular functions shows that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models, and suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.
Abstract: Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.

5,887 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
88% related
Server
79.5K papers, 1.4M citations
83% related
Robustness (computer science)
94.7K papers, 1.6M citations
82% related
Markov chain
51.9K papers, 1.3M citations
81% related
Inference
36.8K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,527
20223,377
20211,538
20201,626
20191,636
20181,634