Topic
High dynamic range
About: High dynamic range is a(n) research topic. Over the lifetime, 4280 publication(s) have been published within this topic receiving 76293 citation(s). The topic is also known as: HDR.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
01 Jan 2011
TL;DR: In this paper, the acquisition and use of digital images in a wide variety of scientific fields is discussed. But the focus is on high dynamic range imaging in more than two dimensions.
Abstract: "This guide clearly explains the acquisition and use of digital images in a wide variety of scientific fields. This sixth edition features new sections on selecting a camera with resolution appropriate for use on light microscopes, on the ability of current cameras to capture raw images with high dynamic range, and on imaging in more than two dimensions. It discusses Dmax for X-ray images and combining images with different exposure settings to further extend the dynamic range. This edition also includes a new chapter on shape measurements, a review of new developments in image file searching, and a wide range of new examples and diagrams"
3,008 citations
[...]
TL;DR: This work discusses how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing, and demonstrates a few applications of having high dynamic range radiance maps.
Abstract: We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the response function of the imaging process, up to factor of scale, using the assumption of reciprocity. With the known response function, the algorithm can fuse the multiple photographs into a single, high dynamic range radiance map whose pixel values are proportional to the true radiance values in the scene. We demonstrate our method on images acquired with both photochemical and digital imaging processes. We discuss how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing. Lastly, we demonstrate a few applications of having high dynamic range radiance maps, such as synthesizing realistic motion blur and simulating the response of the human visual system.
2,775 citations
[...]
TL;DR: A new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail, is presented, based on a two-scale decomposition of the image into a base layer.
Abstract: We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer,...
1,607 citations
[...]
TL;DR: The work presented in this paper leverages the time-tested techniques of photographic practice to develop a new tone reproduction operator and uses and extends the techniques developed by Ansel Adams to deal with digital images.
Abstract: A classic photographic task is the mapping of the potentially high dynamic range of real world luminances to the low dynamic range of the photographic print. This tone reproduction problem is also faced by computer graphics practitioners who map digital images to a low dynamic range print or screen. The work presented in this paper leverages the time-tested techniques of photographic practice to develop a new tone reproduction operator. In particular, we use and extend the techniques developed by Ansel Adams to deal with digital images. The resulting algorithm is simple and produces good results for a wide variety of images.
1,593 citations
[...]
TL;DR: The results demonstrate that the method is capable of drastic dynamic range compression, while preserving fine details and avoiding common artifacts, such as halos, gradient reversals, or loss of local contrast.
Abstract: We present a new method for rendering high dynamic range images on conventional displays. Our method is conceptually simple, computationally efficient, robust, and easy to use. We manipulate the gradient field of the luminance image by attenuating the magnitudes of large gradients. A new, low dynamic range image is then obtained by solving a Poisson equation on the modified gradient field. Our results demonstrate that the method is capable of drastic dynamic range compression, while preserving fine details and avoiding common artifacts, such as halos, gradient reversals, or loss of local contrast. The method is also able to significantly enhance ordinary images by bringing out detail in dark regions.
1,395 citations