scispace - formally typeset
Search or ask a question
Topic

High dynamic range

About: High dynamic range is a research topic. Over the lifetime, 4280 publications have been published within this topic receiving 76293 citations. The topic is also known as: HDR.


Papers
More filters
Proceedings ArticleDOI
10 Oct 2004
TL;DR: The visual difference predictor (VDP) developed by Daly is extended to handle HDR data to predict if a human observer is able to perceive differences for a pair of HDR images under the adaptation conditions corresponding to the real scene observation.
Abstract: Since new imaging and rendering systems commonly use physically accurate lighting information in the form of high-dynamic range data, there is a need for an automatic visual quality assessment of the resulting images. In this work we extend the visual difference predictor (VDP) developed by Daly to handle HDR data. This let us predict if a human observer is able to perceive differences for a pair of HDR images under the adaptation conditions corresponding to the real scene observation.

114 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an adaptive interference cancellation (AIC) system for radio astronomy instrumentation, which is a real-time approach to interference excision that has not been used before in radio astronomy.
Abstract: Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.

113 citations

Journal ArticleDOI
01 Jan 1995-Micron
TL;DR: In this paper, the basic operation and important imaging characteristics of slow-scan charge-coupled device (CCD) cameras suitable for electron microscopy are reviewed, showing that these image detectors approach single electron detection, have high dynamic range, exceptional linearity, negligible distortion and excellent spectral transfer characteristics.

111 citations

Proceedings ArticleDOI
TL;DR: The HD Photo coding technology developed by Microsoft Corporation is introduced and the storage format for this technology is now under consideration in the ITU-T/ISO/IEC JPEG committee as a candidate for standardization under the name JPEG XR.
Abstract: This paper introduces the HD Photo coding technology developed by Microsoft Corporation. The storage format for this technology is now under consideration in the ITU-T/ISO/IEC JPEG committee as a candidate for standardization under the name JPEG XR. The technology was developed to address end-to-end digital imaging application requirements, particularly including the needs of digital photography. HD Photo includes features such as good compression capability, high dynamic range support, high image quality capability, lossless coding support, full-format 4:4:4 color sampling, simple thumbnail extraction, embedded bitstream scalability of resolution and fidelity, and degradation-free compressed domain support of key manipulations such as cropping, flipping and rotation. HD Photo has been designed to optimize image quality and compression efficiency while also enabling low-complexity encoding and decoding implementations. To ensure low complexity for implementations, the design features have been incorporated in a way that not only minimizes the computational requirements of the individual components (including consideration of such aspects as memory footprint, cache effects, and parallelization opportunities) but results in a self-consistent design that maximizes the commonality of functional processing components.

111 citations

Journal ArticleDOI
TL;DR: A multi-polarization fringe projection (MPFP) imaging technique that eliminates saturated points and enhances the fringe contrast by selecting the proper polarized channel measurements is proposed.
Abstract: Traditional fringe-projection three-dimensional (3D) imaging techniques struggle to estimate the shape of high dynamic range (HDR) objects where detected fringes are of limited visibility. Moreover, saturated regions of specular reflections can completely block any fringe patterns, leading to lost depth information. We propose a multi-polarization fringe projection (MPFP) imaging technique that eliminates saturated points and enhances the fringe contrast by selecting the proper polarized channel measurements. The developed technique can be easily extended to include measurements captured under different exposure times to obtain more accurate shape rendering for very HDR objects.

109 citations


Network Information
Related Topics (5)
Pixel
136.5K papers, 1.5M citations
88% related
Image processing
229.9K papers, 3.5M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
83% related
Feature extraction
111.8K papers, 2.1M citations
83% related
Image segmentation
79.6K papers, 1.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023122
2022263
2021164
2020243
2019238
2018262