scispace - formally typeset
Search or ask a question
Topic

High entropy alloys

About: High entropy alloys is a research topic. Over the lifetime, 3280 publications have been published within this topic receiving 122006 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new approach for the design of alloys is presented in this paper, where high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies.
Abstract: A new approach for the design of alloys is presented in this study. These high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies. Preliminary results demonstrate examples of the alloys with simple crystal structures, nanostructures, and promising mechanical properties. This approach may be opening a new era in materials science and engineering.

8,175 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the confusion principle does not apply, and other factors are more important in promoting glass formation of late transition metal rich multicomponent alloys.
Abstract: Multicomponent alloys containing several components in equal atomic proportions have been manufactured by casting and melt spinning, and their microstructures and properties have been investigated by a combination of optical microscopy, scanning electron microscopy, electron probe microanalysis, X-ray diffractrometry and microhardness measurements. Alloys containing 16 and 20 components in equal proportions are multiphase, crystalline and brittle both as-cast and after melt spinning. A five component Fe20Cr20Mn20Ni20Co20 alloy forms a single fcc solid solution which solidifies dendritically. A wide range of other six to nine component late transition metal rich multicomponent alloys exhibit the same majority fcc primary dendritic phase, which can dissolve substantial amounts of other transition metals such as Nb, Ti and V. More electronegative elements such as Cu and Ge are less stable in the fcc dendrites and are rejected into the interdendritic regions. The total number of phases is always well below the maximum equilibrium number allowed by the Gibbs phase rule, and even further below the maximum number allowed under non-equilibrium solidification conditions. Glassy structures are not formed by casting or melt spinning of late transition metal rich multicomponent alloys, indicating that the confusion principle does not apply, and other factors are more important in promoting glass formation.

5,289 citations

Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
05 Sep 2014-Science
TL;DR: This work examined a five-element high-entropy alloy, CrMnFeCoNi, which forms a single-phase face-centered cubic solid solution, and found it to have exceptional damage tolerance with tensile strengths above 1 GPa and fracture toughness values exceeding 200 MPa·m1/2.
Abstract: High-entropy alloys are equiatomic, multi-element systems that can crystallize as a single phase, despite containing multiple elements with different crystal structures. A rationale for this is that the configurational entropy contribution to the total free energy in alloys with five or more major elements may stabilize the solid-solution state relative to multiphase microstructures. We examined a five-element high-entropy alloy, CrMnFeCoNi, which forms a single-phase face-centered cubic solid solution, and found it to have exceptional damage tolerance with tensile strengths above 1 GPa and fracture toughness values exceeding 200 MPa·m(1/2). Furthermore, its mechanical properties actually improve at cryogenic temperatures; we attribute this to a transition from planar-slip dislocation activity at room temperature to deformation by mechanical nanotwinning with decreasing temperature, which results in continuous steady strain hardening.

3,704 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
91% related
Thin film
275.5K papers, 4.5M citations
83% related
Amorphous solid
117K papers, 2.2M citations
83% related
Band gap
86.8K papers, 2.2M citations
81% related
Ultimate tensile strength
129.2K papers, 2.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023669
20221,248
2021744
2020620
2019492
2018399