scispace - formally typeset
Search or ask a question
Topic

High harmonic generation

About: High harmonic generation is a research topic. Over the lifetime, 11694 publications have been published within this topic receiving 222650 citations. The topic is also known as: HHG.


Papers
More filters
Journal ArticleDOI
TL;DR: The intensity enhancement of a single high-order harmonic is demonstrated by using low-ionized tin ions in a laser-ablation plume as the nonlinear medium and attributed to multiphoton resonance with a strong radiative transition of the Sn II ion.
Abstract: We have successfully demonstrated intensity enhancement of a single high-order harmonic at a wavelength of 46.76 nm by using low-ionized tin ions in a laser-ablation plume as the nonlinear medium. The ablation plume was produced by irradiating a solid tin target with a 10 mJ energy picosecond laser pulse. Strong 17th-harmonic generation at a wavelength of 46.76 nm was observed with a conversion efficiency of about 10−4. We attribute the strong enhancement of the single high-order harmonic to multiphoton resonance with a strong radiative transition of the Sn II ion.

80 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the generation of high-order elliptically and circularly polarized harmonic spectra in an aligned H+2 molecule ion by a combination of two-colour ultrashort intense laser fields from numerical solutions of the corresponding time-dependent Schrodinger equation (TDSE).
Abstract: We describe the generation of high-order elliptically and circularly polarized harmonic spectra in an aligned H+2 molecule ion by a combination of two-colour ultrashort intense laser fields from numerical solutions of the corresponding time-dependent Schrodinger equation (TDSE). In intense bichromatic circularly and linearly or circularly polarized laser pulses with intensity I0 and angular frequencies ω0 and 2ω0, it is found that maximum molecular high-order harmonic generation (MHOHG) energies are functions of the molecular internuclear distance. Based on a classical model of laser-induced electron collisions with neighbouring ions, the optimal values of the pulse relative carrier envelope phase , the molecular internuclear distance R and the angle of molecular alignment to the laser polarization axis are obtained for efficiently producing MHOHG spectra with the maximum harmonic energy Ip + 13.5Up, where Ip is the ionization potential of the molecule and Up = I0/4meω20 is the ponderomotive energy of the continuum electron at intensity I0 and frequency ω0 of the laser pulse. The results have been confirmed from corresponding TDSE nonperturbative numerical simulations. The polarization property of the generated harmonics is also presented. The mechanism of MHOHG is further characterized with a Gabor time frequency analysis. It is confirmed that a single collision trajectory of the continuum electron with neighbouring ions dominates in the MHOHG processes. The high efficiency of the proposed MHOHG scheme provides a possible source for production of elliptically and/or circularly polarized attosecond extreme ultraviolet pulses. Circularly polarized attosecond pulses can also be generated by using intense ultrashort circularly polarized laser pulses in combination with static electric fields of comparable intensity for H+2 at equilibrium. A time frequency analysis also confirms the role of single recollisions as the dominant mechanism of the generation of circularly polarized harmonics.

80 citations

Journal ArticleDOI
TL;DR: The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity and a conversion efficiency of 18.5 % was achieved in the experiments.
Abstract: More than 1.5 W of green light at 531 nm is generated by single-pass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments.

80 citations

Journal ArticleDOI
TL;DR: An all-dielectric metasurface designed for the nonlinear optical generation of VUV light, consisting of an array of zinc oxide nanoresonators, which has the potential to open the door toward simple and compact VUV sources for new applications.
Abstract: Vacuum ultraviolet (VUV) light has important applications in many fields, ranging from device fabrication to photochemistry, from environmental remediation to microscopy and spectroscopy. Methods to produce coherent VUV light frequently utilize high harmonic generation in media such as rare gases or atomic vapors; nonlinear optical crystals that support second harmonic generation into the VUV are quite rare. Here, we demonstrate an all-dielectric metasurface designed for the nonlinear optical generation of VUV light. Consisting of an array of zinc oxide nanoresonators, the device exhibits a magnetic dipole resonance at a wavelength of 394 nm. When excited with ultrafast laser pulses at this wavelength, the second harmonic at 197 nm is readily generated. Manipulation of the metasurface design enables control over the radiation pattern. This work has the potential to open the door toward simple and compact VUV sources for new applications.

80 citations

Journal ArticleDOI
TL;DR: It has been found that group-velocity dispersion can be used to advantage by predelaying the ordinary and extraordinary polarizations appropriately in a thin KDP crystal with its axes aligned at 90{degree} to the main conversion crystal.
Abstract: A computer model has been used to investigate frequency doubling of 1-psec duration high-power pulses in potassium dihydrogen phosphate (KDP) for type-II phase matching. It has been found that group-velocity dispersion can be used to advantage by predelaying the ordinary and extraordinary polarizations appropriately in a thin KDP crystal with its axes aligned at 90\ifmmode^\circ\else\textdegree\fi{} to the main conversion crystal. In that situation power conversion g100% from the fundamental to the second harmonic can be obtained with simultaneous ``compression'' of the output pulse duration by up to a factor of 5.

80 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
90% related
Semiconductor
72.6K papers, 1.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
86% related
Optical fiber
167K papers, 1.8M citations
86% related
Excited state
102.2K papers, 2.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022438
2021399
2020489
2019516
2018433