scispace - formally typeset
Search or ask a question
Topic

High harmonic generation

About: High harmonic generation is a research topic. Over the lifetime, 11694 publications have been published within this topic receiving 222650 citations. The topic is also known as: HHG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the extension of hollow-core fiber pulse compression to longer wavelengths and demonstrate the beneficial effect of few-cycle pulses which enable higher saturation intensities on target compared to multicycle pulses.
Abstract: We report the extension of hollow-core fibre pulse compression to longer wavelengths. High-energy multi-cycle infrared pulses are generated via optical parametric amplification and subsequently broadened in the fibre. 2.5-cycle pulses at the Signal wavelength (1.4 ?m) and 1.6-cycle pulses at the Idler wavelength (1.8 ?m) in the sub-millijoule regime have been generated. New compression schemes can be applied at 1.8 ?m and beyond. In this manner, 1.6-cycle carrier envelope phase stable pulses were generated by linear propagation in the anomalous dispersion regime of bulk glass which surprisingly enables compression below its third-order dispersion limit. Furthermore, a dispersion-free way of controlling the carrier envelope phase is demonstrated. Moreover, we experimentally confirm the increase in high-harmonic cut-off energy with driving laser wavelength and demonstrate the beneficial effect of few-cycle pulses which enable higher saturation intensities on target compared to multi-cycle pulses. It will be an ideal tool for future synthesis of isolated attosecond pulses in the sub-keV regime. With this laser source, we revealed for the first time multi-electron effects in high harmonic generation in xenon.

64 citations

Journal ArticleDOI
TL;DR: In this article, an extremely high power second-harmonic gyro-TWT has been designed, evaluated and optimized with a self-consistent nonlinear numerical simulation code, which is based on the magnetron-injection-gun (MIG)-type beam.
Abstract: For pt.I, see ibid., vol.20, no.3, p.155-162 (1992). Based on an analytical study of the stability problems of gyrotron traveling wave amplifiers (gyro-TWTs), an extremely high power second-harmonic gyro-TWT has been designed, evaluated and optimized with a self-consistent nonlinear numerical simulation code. The design, which is based on the magnetron-injection-gun (MIG)-type beam, is presented. Using a 100 kV, 25 A MIG beam with alpha =1 and an axial velocity spread of 5%, nonlinear self-consistent analysis of a three-stage second-harmonic gyro-TWT amplifier predicts a peak output power of 533 kW, peak efficiency of 21.3% and a 7.4% saturated bandwidth, which verifies the theoretical predictions that a stable harmonic gyro-TWT can generate power levels an order of magnitude higher than those possible from a fundamental gyro-TWT. It is shown that the positioning of the electron beam is very important. A multistage structure is used to recover the loss in gain resulting from shortening the interaction sections to ensure stability. >

64 citations

Journal ArticleDOI
TL;DR: The methodology of orienting polar molecules is brought together with the phase sensitivity of high harmonic spectroscopy to experimentally compare the phase difference of attosecond bursts of radiation emitted upon electron recollision from different ends of a polar molecule.
Abstract: We bring the methodology of orienting polar molecules together with the phase sensitivity of high harmonic spectroscopy to experimentally compare the phase difference of attosecond bursts of radiation emitted upon electron recollision from different ends of a polar molecule. This phase difference has an impact on harmonics from aligned polar molecules, suppressing emission from the molecules parallel to the driving laser field while favoring the perpendicular ones. For oriented molecules, we measure the amplitude ratio of even to odd harmonics produced when intense light irradiates CO molecules and determine the degree of orientation and the phase difference of attosecond bursts using molecular frame ionization and recombination amplitudes. The sensitivity of the high harmonic spectrum to subtle phase differences in the emitted radiation makes it a detailed probe of polar molecules and will drive major advances in the theory of high harmonic generation.

64 citations

Journal ArticleDOI
TL;DR: In this article, a colloid of ultrasmall nano particles (∼ 1 nm) is reconstituted into microcrystallites films on device-quality Si. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry.
Abstract: We dispersed crystalline Si into a colloid of ultrasmall nano particles (∼1 nm), and reconstituted it into microcrystallites films on device-quality Si. The film is excited by near-infrared femtosecond two-photon process in the range 765–835 nm, with incident average power in the range 15–70 mW, focused to ∼1 μm. We have observed strong radiation at half the wavelength of the incident beam. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry. Ionic vibration of or/and excitonic self-trapping on novel radiative Si–Si dimer phase, found only in ultrasmall nanoparticles, are suggested as a basic mechanism for inducing anharmonicity that breaks the centrosymmetry.

64 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
90% related
Semiconductor
72.6K papers, 1.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
86% related
Optical fiber
167K papers, 1.8M citations
86% related
Excited state
102.2K papers, 2.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022438
2021399
2020489
2019516
2018433