scispace - formally typeset
Search or ask a question
Topic

High harmonic generation

About: High harmonic generation is a research topic. Over the lifetime, 11694 publications have been published within this topic receiving 222650 citations. The topic is also known as: HHG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Roentgen X-ray tube was used for high-order harmonic generation with small-scale femtosecond laser technology, which combines the microscopic attosecond science of atoms driven by intense laser fields with the macroscopic extreme nonlinear optics of phase matching.
Abstract: The frequency doubling of laser light was one of the first new phenomena observed following the invention of the laser over 50 years ago. Since then, the quest to extend nonlinear optical upconversion to ever-shorter wavelengths has been a grand challenge in laser science. Two decades of research into high-order harmonic generation has recently uncovered several feasible routes for generating bright coherent X-ray beams using small-scale femtosecond lasers. The physics of this technique combines the microscopic attosecond science of atoms driven by intense laser fields with the macroscopic extreme nonlinear optics of phase matching, thus essentially realizing a coherent, tabletop version of the Roentgen X-ray tube.

522 citations

Journal ArticleDOI
TL;DR: Blueshifting of the laser and harmonic wavelengths indicates a small degree of ionizatoin until the threshold for highest harmonics (>91 st) is reacthed, compared to recent calculations of the strong-field atomic response.
Abstract: Neon gas excited by 800-nm laser pulses (15 mJ, 125 fsec) at an intensity near ${10}^{15}$ W/${\mathrm{cm}}^{2}$ generates harmonics up to 109th order. The appearance of successively higher harmonics as the laser intensity is increased is compared to recent calculations of the strong-field atomic response. Blueshifting of the laser and harmonic wavelengths indicates a small degree of ionization until the threshold for the highest harmonic (g91st) is reached.

514 citations

30 Jan 1995
TL;DR: In this paper, a new nonlinear optical (NLO) crystal, CsLiB6O10 (CLBO) has been discovered, which can quadruple and quintuple the Nd:YAG laser output.
Abstract: A new nonlinear optical (NLO) crystal, CsLiB6O10 (CLBO) has been discovered. CLBO can quadruple and quintuple the Nd:YAG laser output. Large CLBO crystal with dimensions 13×12×10 cm3 could be grown in twelve days.

512 citations

Journal ArticleDOI
14 Jul 2005-Nature
TL;DR: In this paper, the authors demonstrate intra-cavity high harmonic generation in the extreme ultraviolet, which promises to lead to another joint frontier of precision spectroscopy and ultrafast science.
Abstract: Since 1998, the interaction of precision spectroscopy and ultrafast laser science has led to several notable accomplishments. Femtosecond laser optical frequency 'combs' (evenly spaced spectral lines) have revolutionized the measurement of optical frequencies and enabled optical atomic clocks. The same comb techniques have been used to control the waveform of ultrafast laser pulses, which permitted the generation of single attosecond pulses, and have been used in a recently demonstrated 'oscilloscope' for light waves. Here we demonstrate intra-cavity high harmonic generation in the extreme ultraviolet, which promises to lead to another joint frontier of precision spectroscopy and ultrafast science. We have generated coherent extreme ultraviolet radiation at a repetition frequency of more than 100 MHz, a 1,000-fold improvement over previous experiments. At such a repetition rate, the mode spacing of the frequency comb, which is expected to survive the high harmonic generation process, is large enough for high resolution spectroscopy. Additionally, there may be many other applications of such a quasi-continuous compact and coherent extreme ultraviolet source, including extreme ultraviolet holography, microscopy, nanolithography and X-ray atomic clocks.

511 citations

Journal ArticleDOI
30 Jul 2015-Nature
TL;DR: This work studies high-harmonic generation in a bulk solid directly in the time domain, and reveals a new kind of strong-field excitation in the crystal that justifies the hope for all-optical band-structure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates.
Abstract: Acceleration and collision of particles has been a key strategy for exploring the texture of matter. Strong light waves can control and recollide electronic wavepackets, generating high-harmonic radiation that encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of high-harmonic generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems, and provides hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not so far been observable in real time. Here we study high-harmonic generation in a bulk solid directly in the time domain, and reveal a new kind of strong-field excitation in the crystal. Unlike established atomic sources, our solid emits high-harmonic radiation as a sequence of subcycle bursts that coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features are characteristic of a non-perturbative quantum interference process that involves electrons from multiple valence bands. These results identify key mechanisms for future solid-state attosecond sources and next-generation light-wave electronics. The new quantum interference process justifies the hope for all-optical band-structure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates.

506 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
90% related
Semiconductor
72.6K papers, 1.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
86% related
Optical fiber
167K papers, 1.8M citations
86% related
Excited state
102.2K papers, 2.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022438
2021399
2020489
2019516
2018433