scispace - formally typeset
Search or ask a question
Topic

High harmonic generation

About: High harmonic generation is a research topic. Over the lifetime, 11694 publications have been published within this topic receiving 222650 citations. The topic is also known as: HHG.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived, and the source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms.
Abstract: Several features of intense, short-pulse (/spl lsim/1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized.

431 citations

Journal ArticleDOI
TL;DR: In this article, the first experimental demonstration of high harmonic generation in the relativistic limit was obtained on the Vulcan Petawatt laser, achieving high conversion efficiencies (η>10−6 per harmonic) and bright emission (>1022 photons s−1 mm−2 mrad−2 (0.1% bandwidth)) at wavelengths <4nm.
Abstract: The generation of extremely bright coherent X-ray pulses in the femtosecond and attosecond regime is currently one of the most exciting frontiers of physics–allowing, for the first time, measurements with unprecedented temporal resolution1,2,3,4,5,6. Harmonics from laser–solid target interactions have been identified as a means of achieving fields as high as the Schwinger limit2,7 (E=1.3×1016 V m−1) and as a highly promising route to high-efficiency attosecond (10−18 s) pulses8 owing to their intrinsically phase-locked nature. The key steps to attain these goals are achieving high conversion efficiencies and a slow decay of harmonic efficiency to high orders by driving harmonic production to the relativistic limit1. Here we present the first experimental demonstration of high harmonic generation in the relativistic limit, obtained on the Vulcan Petawatt laser9. High conversion efficiencies (η>10−6 per harmonic) and bright emission (>1022 photons s−1 mm−2 mrad−2 (0.1% bandwidth)) are observed at wavelengths <4 nm (the `water-window' region of particular interest for bio-microscopy).

431 citations

Journal ArticleDOI
TL;DR: In this article, the first bright, phase-matched, extreme ultraviolet circularly-polarized high harmonics source was demonstrated for magnetic circular dichroism measurements at the M-shell absorption edges of Co.
Abstract: Circularly-polarized extreme ultraviolet and X-ray radiation is useful for analysing the structural, electronic and magnetic properties of materials. To date, such radiation has only been available at large-scale X-ray facilities such as synchrotrons. Here, we demonstrate the first bright, phase-matched, extreme ultraviolet circularly-polarized high harmonics source. The harmonics are emitted when bi-chromatic counter-rotating circularly-polarized laser pulses field-ionize a gas in a hollowcore waveguide. We use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase-matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to linearly polarized high harmonic sources. This work represents a critical advance towards the development of table-top systems for element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution.

417 citations

Journal ArticleDOI
02 Feb 2012-Nature
TL;DR: The generation of extreme-ultraviolet frequency combs, reaching wavelengths of 40 nanometres, is reported by coupling a high-power near-infrared frequency comb to a robust femtosecond enhancement cavity, and the absolute frequency of the argon transition has been determined by direct frequency comb spectroscopy.
Abstract: By coupling a high-power, high-repetition-rate near-infrared frequency comb to a femtosecond optical cavity, a frequency comb operating in the extreme-ultraviolet spectral range has been produced, by high harmonic generation, and provides high-resolution spectroscopy in this spectral region. Laser-based optical frequency combs, so called because they emit evenly spaced spectral lines, are used in precision spectroscopy and other applications requiring accurate measurements, such as atomic clocks. Efforts to extend this capability to shorter wavelengths in the extreme ultraviolet — which would open up exciting new applications, including searches for variation in fundamental constants — have lacked sufficient power for the purpose until now. Jun Ye and co-workers demonstrate a new approach, using a high-power, high-repetition pulsed infrared laser coupled into an optical cavity, to produce an improved extreme UV comb. In a first precision spectroscopy demonstration, they use direct frequency comb spectroscopy to determine argon and neon atomic transitions with ultra-high precision. The development of the optical frequency comb (a spectrum consisting of a series of evenly spaced lines) has revolutionized metrology and precision spectroscopy owing to its ability to provide a precise and direct link between microwave and optical frequencies1,2. A further advance in frequency comb technology is the generation of frequency combs in the extreme-ultraviolet spectral range by means of high-harmonic generation in a femtosecond enhancement cavity3,4. Until now, combs produced by this method have lacked sufficient power for applications, a drawback that has also hampered efforts to observe phase coherence of the high-repetition-rate pulse train produced by high-harmonic generation, which is an extremely nonlinear process. Here we report the generation of extreme-ultraviolet frequency combs, reaching wavelengths of 40 nanometres, by coupling a high-power near-infrared frequency comb5 to a robust femtosecond enhancement cavity. These combs are powerful enough for us to observe single-photon spectroscopy signals for both an argon transition at 82 nanometres and a neon transition at 63 nanometres, thus confirming the combs’ coherence in the extreme ultraviolet. The absolute frequency of the argon transition has been determined by direct frequency comb spectroscopy. The resolved ten-megahertz linewidth of the transition, which is limited by the temperature of the argon atoms, is unprecedented in this spectral region and places a stringent upper limit on the linewidth of individual comb teeth. Owing to the lack of continuous-wave lasers, extreme-ultraviolet frequency combs are at present the only promising route to extending ultrahigh-precision spectroscopy to the spectral region below 100 nanometres. At such wavelengths there is a wide range of applications, including the spectroscopy of electronic transitions in molecules6, experimental tests of bound-state and many-body quantum electrodynamics in singly ionized helium and neutral helium7,8,9, the development of next-generation ‘nuclear’ clocks10,11,12 and searches for variation of fundamental constants13 using the enhanced sensitivity of highly charged ions14.

417 citations

Journal ArticleDOI
TL;DR: By introducing the second-harmonic component of the white light in the laser-induced plasma as a local oscillator, coherent detection of broadband THz waves with ambient air is demonstrated for the first time.
Abstract: We report the experimental results and theoretical analysis of broadband detection of terahertz (THz) waves via electric-field-induced second-harmonic generation in laser-induced air plasma with ultrashort laser pulses. By introducing the second-harmonic component of the white light in the laser-induced plasma as a local oscillator, coherent detection of broadband THz waves with ambient air is demonstrated for the first time. Our results show that, depending on the probe intensity, detection of THz waves in air can be categorized as incoherent, hybrid, and coherent detection. Coherent detection is achieved only when the tunnel ionization process dominates in gases.

415 citations


Network Information
Related Topics (5)
Laser
353.1K papers, 4.3M citations
90% related
Semiconductor
72.6K papers, 1.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
86% related
Optical fiber
167K papers, 1.8M citations
86% related
Excited state
102.2K papers, 2.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023177
2022438
2021399
2020489
2019516
2018433